Cargando…
Agent-Based Explanations in AI: Towards an Abstract Framework
Recently, the eXplainable AI (XAI) research community has focused on developing methods making Machine Learning (ML) predictors more interpretable and explainable. Unfortunately, researchers are struggling to converge towards an unambiguous definition of notions such as interpretation, or, explanati...
Autores principales: | Ciatto, Giovanni, Schumacher, Michael I., Omicini, Andrea, Calvaresi, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338184/ http://dx.doi.org/10.1007/978-3-030-51924-7_1 |
Ejemplares similares
-
Agent-based Modeling for Ontology-driven Analysis of Patient Trajectories
por: Calvaresi, Davide, et al.
Publicado: (2020) -
In-Time Explainability in Multi-Agent Systems: Challenges, Opportunities, and Roadmap
por: Alzetta, Francesco, et al.
Publicado: (2020) -
Putting explainable AI in context: institutional explanations for medical AI
por: Theunissen, Mark, et al.
Publicado: (2022) -
Editorial: Explanation in human-AI systems
por: Angelopoulou, Anastasia, et al.
Publicado: (2022) -
Explainable, transparent autonomous agents and multi-agent systems: first international workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13-14, 2019, revised selected papers
por: Calvaresi, Davide, et al.
Publicado: (2019)