Cargando…
Multi-granularity Complex Network Representation Learning
Network representation learning aims to learn the low dimensional vector of the nodes in a network while maintaining the inherent properties of the original information. Existing algorithms focus on the single coarse-grained topology of nodes or text information alone, which cannot describe complex...
Autores principales: | Li, Peisen, Wang, Guoyin, Hu, Jun, Li, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338194/ http://dx.doi.org/10.1007/978-3-030-52705-1_18 |
Ejemplares similares
-
Granular computing with multiple granular layers for brain big data processing
por: Wang, Guoyin, et al.
Publicado: (2014) -
Multi-Task Network Representation Learning
por: Xie, Yu, et al.
Publicado: (2020) -
Identifying influential nodes based on network representation learning in complex networks
por: Wei, Hao, et al.
Publicado: (2018) -
Information Extraction Network Based on Multi-Granularity Attention and Multi-Scale Self-Learning
por: Sun, Weiwei, et al.
Publicado: (2023) -
Multi-scaled self-attention for drug–target interaction prediction based on multi-granularity representation
por: Zeng, Yuni, et al.
Publicado: (2022)