Cargando…

Decision Theory Meets Explainable AI

Explainability has been a core research topic in AI for decades and therefore it is surprising that the current concept of Explainable AI (XAI) seems to have been launched as late as 2016. This is a problem with current XAI research because it tends to ignore existing knowledge and wisdom gathered o...

Descripción completa

Detalles Bibliográficos
Autor principal: Främling, Kary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338196/
http://dx.doi.org/10.1007/978-3-030-51924-7_4
Descripción
Sumario:Explainability has been a core research topic in AI for decades and therefore it is surprising that the current concept of Explainable AI (XAI) seems to have been launched as late as 2016. This is a problem with current XAI research because it tends to ignore existing knowledge and wisdom gathered over decades or even centuries by other relevant domains. This paper presents the notion of Contextual Importance and Utility (CIU), which is based on known notions and methods of Decision Theory. CIU extends the notions of importance and utility for the non-linear models of AI systems and notably those produced by Machine Learning methods. CIU provides a universal and model-agnostic foundation for XAI.