Cargando…
Comparison of Scanpy-based algorithms to remove the batch effect from single-cell RNA-seq data
With the development of single-cell RNA sequencing (scRNA-seq) technology, analysts need to integrate hundreds of thousands of cells with multiple experimental batches. It is becoming increasingly difficult for users to select the best integration methods to remove batch effects. Here, we compared t...
Autores principales: | Li, Jiaqi, Yu, Chengxuan, Ma, Lifeng, Wang, Jingjing, Guo, Guoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338326/ https://www.ncbi.nlm.nih.gov/pubmed/32632608 http://dx.doi.org/10.1186/s13619-020-00041-9 |
Ejemplares similares
-
SCANPY: large-scale single-cell gene expression data analysis
por: Wolf, F. Alexander, et al.
Publicado: (2018) -
EpiScanpy: integrated single-cell epigenomic analysis
por: Danese, Anna, et al.
Publicado: (2021) -
Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data
por: Sturm, Gregor, et al.
Publicado: (2020) -
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
por: Chazarra-Gil, Ruben, et al.
Publicado: (2021) -
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Li, Xiangjie, et al.
Publicado: (2020)