Cargando…
Predicting breast cancer risk using interacting genetic and demographic factors and machine learning
Breast cancer (BC) is a multifactorial disease and the most common cancer in women worldwide. We describe a machine learning approach to identify a combination of interacting genetic variants (SNPs) and demographic risk factors for BC, especially factors related to both familial history (Group 1) an...
Autores principales: | Behravan, Hamid, Hartikainen, Jaana M., Tengström, Maria, Kosma, Veli–Matti, Mannermaa, Arto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338351/ https://www.ncbi.nlm.nih.gov/pubmed/32632202 http://dx.doi.org/10.1038/s41598-020-66907-9 |
Ejemplares similares
-
Machine learning identifies interacting genetic variants contributing to breast cancer risk: A case study in Finnish cases and controls
por: Behravan, Hamid, et al.
Publicado: (2018) -
The debatable presence of PIWI‐interacting RNAs in invasive breast cancer
por: Kärkkäinen, Emmi, et al.
Publicado: (2021) -
Expression profiles of small non-coding RNAs in breast cancer tumors characterize clinicopathological features and show prognostic and predictive potential
por: Kärkkäinen, Emmi, et al.
Publicado: (2022) -
High mutation burden of circulating cell‐free DNA in early‐stage breast cancer patients is associated with a poor relapse‐free survival
por: Kujala, Jouni, et al.
Publicado: (2020) -
Circulating Cell-Free DNA Reflects the Clonal Evolution of Breast Cancer Tumors
por: Kujala, Jouni, et al.
Publicado: (2022)