Cargando…
Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools
In recent years, high-throughput sequencing technologies provide unprecedented opportunity to depict cancer samples at multiple molecular levels. The integration and analysis of these multi-omics datasets is a crucial and critical step to gain actionable knowledge in a precision medicine framework....
Autores principales: | Nicora, Giovanna, Vitali, Francesca, Dagliati, Arianna, Geifman, Nophar, Bellazzi, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338582/ https://www.ncbi.nlm.nih.gov/pubmed/32695678 http://dx.doi.org/10.3389/fonc.2020.01030 |
Ejemplares similares
-
Using topological data analysis and pseudo time series to infer temporal phenotypes from electronic health records
por: Dagliati, Arianna, et al.
Publicado: (2020) -
Editorial: Multi-omic Data Integration in Oncology
por: Finotello, Francesca, et al.
Publicado: (2020) -
Sex and APOE genotype differences related to statin use in the aging population
por: Dagliati, Arianna, et al.
Publicado: (2021) -
An ICT infrastructure to integrate clinical and molecular data in oncology research
por: Segagni, Daniele, et al.
Publicado: (2012) -
OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry
por: Arioli, Angelica, et al.
Publicado: (2021)