Cargando…
Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids
Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of rea...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339148/ https://www.ncbi.nlm.nih.gov/pubmed/32559461 http://dx.doi.org/10.1016/j.cell.2020.05.053 |
_version_ | 1783554830793441280 |
---|---|
author | Koundouros, Nikos Karali, Evdoxia Tripp, Aurelien Valle, Adamo Inglese, Paolo Perry, Nicholas J.S. Magee, David J. Anjomani Virmouni, Sara Elder, George A. Tyson, Adam L. Dória, Maria Luisa van Weverwijk, Antoinette Soares, Renata F. Isacke, Clare M. Nicholson, Jeremy K. Glen, Robert C. Takats, Zoltan Poulogiannis, George |
author_facet | Koundouros, Nikos Karali, Evdoxia Tripp, Aurelien Valle, Adamo Inglese, Paolo Perry, Nicholas J.S. Magee, David J. Anjomani Virmouni, Sara Elder, George A. Tyson, Adam L. Dória, Maria Luisa van Weverwijk, Antoinette Soares, Renata F. Isacke, Clare M. Nicholson, Jeremy K. Glen, Robert C. Takats, Zoltan Poulogiannis, George |
author_sort | Koundouros, Nikos |
collection | PubMed |
description | Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT: |
format | Online Article Text |
id | pubmed-7339148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-73391482020-07-14 Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids Koundouros, Nikos Karali, Evdoxia Tripp, Aurelien Valle, Adamo Inglese, Paolo Perry, Nicholas J.S. Magee, David J. Anjomani Virmouni, Sara Elder, George A. Tyson, Adam L. Dória, Maria Luisa van Weverwijk, Antoinette Soares, Renata F. Isacke, Clare M. Nicholson, Jeremy K. Glen, Robert C. Takats, Zoltan Poulogiannis, George Cell Article Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT: Cell Press 2020-06-25 /pmc/articles/PMC7339148/ /pubmed/32559461 http://dx.doi.org/10.1016/j.cell.2020.05.053 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Koundouros, Nikos Karali, Evdoxia Tripp, Aurelien Valle, Adamo Inglese, Paolo Perry, Nicholas J.S. Magee, David J. Anjomani Virmouni, Sara Elder, George A. Tyson, Adam L. Dória, Maria Luisa van Weverwijk, Antoinette Soares, Renata F. Isacke, Clare M. Nicholson, Jeremy K. Glen, Robert C. Takats, Zoltan Poulogiannis, George Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title | Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title_full | Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title_fullStr | Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title_full_unstemmed | Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title_short | Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids |
title_sort | metabolic fingerprinting links oncogenic pik3ca with enhanced arachidonic acid-derived eicosanoids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339148/ https://www.ncbi.nlm.nih.gov/pubmed/32559461 http://dx.doi.org/10.1016/j.cell.2020.05.053 |
work_keys_str_mv | AT koundourosnikos metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT karalievdoxia metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT trippaurelien metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT valleadamo metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT inglesepaolo metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT perrynicholasjs metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT mageedavidj metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT anjomanivirmounisara metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT eldergeorgea metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT tysonadaml metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT doriamarialuisa metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT vanweverwijkantoinette metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT soaresrenataf metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT isackeclarem metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT nicholsonjeremyk metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT glenrobertc metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT takatszoltan metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids AT poulogiannisgeorge metabolicfingerprintinglinksoncogenicpik3cawithenhancedarachidonicacidderivedeicosanoids |