Cargando…

Cladophora glomerata enriched by biosorption with Mn(II) ions alleviates lipopolysaccharide‐induced osteomyelitis‐like model in MC3T3‐E1, and 4B12 osteoclastogenesis

Chronic osteomyelitis, a bone infectious disease, is characterized by dysregulation of bone homeostasis, which results in excessive bone resorption. Lipopolysaccharide (LPS) which is a gram‐negative endotoxin was shown to inhibit osteoblast differentiation and to induce apoptosis and osteoclasts for...

Descripción completa

Detalles Bibliográficos
Autores principales: Bourebaba, Lynda, Michalak, Izabela, Baouche, Meriem, Kucharczyk, Katarzyna, Fal, Andrzej M., Marycz, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339214/
https://www.ncbi.nlm.nih.gov/pubmed/32497406
http://dx.doi.org/10.1111/jcmm.15294
Descripción
Sumario:Chronic osteomyelitis, a bone infectious disease, is characterized by dysregulation of bone homeostasis, which results in excessive bone resorption. Lipopolysaccharide (LPS) which is a gram‐negative endotoxin was shown to inhibit osteoblast differentiation and to induce apoptosis and osteoclasts formation in vitro. While effective therapy against bacteria‐induced bone destruction is quite limited, the investigation of potential drugs that restore down‐regulated osteoblast function remains a major goal in the prevention of bone destruction in infective bone diseases. This investigation aimed to rescue LPS‐induced MC3T3‐E1 pre‐osteoblastic cell line using the methanolic extract of Cladophora glomerata enriched with Mn(II) ions by biosorption. LPS‐induced MC3T3‐E1 cultures supplemented with C. glomerata methanolic extract were tested for expression of the main genes and microRNAs involved in the osteogenesis pathway using RT‐PCR. Moreover, osteoclastogenesis of 4B12 cells was also investigated by tartrate‐resistant acid phosphatase (TRAP) assay. Treatment with algal extract significantly restored LPS‐suppressed bone mineralization and the mRNA expression levels of osteoblast‐specific genes such as runt‐related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OCN), osteopontin (OPN), miR‐27a and miR‐29b. The extract also inhibited osteoblast apoptosis, significantly restored the down‐regulated expression of Bcl‐2, and decreased the loss of MMP and reactive oxygen spices (ROS) production in MC3T3‐E1 cells induced by LPS. Furthermore, pre‐treatment with algal extract strongly decreased the activation of osteoclast in MC3T3‐E1‐4B12 coculture system stimulated by LPS. Our findings suggest that C. glomerata enriched with Mn(II) ions may be a potential raw material for the development of drug for preventing abnormal bone loss induced by LPS in bacteria‐induced bone osteomyelitis.