Cargando…
Incorporation of Remote PM(2.5) Concentrations into the Downscaler Model for Spatially Fused Air Quality Surfaces
The United States Environmental Protection Agency (EPA) has implemented a Bayesian spatial data fusion model called the Downscaler (DS) model to generate daily air quality surfaces for PM(2.5) across the contiguous U.S. Previous implementations of DS relied on monitoring data from EPA’s Air Quality...
Autores principales: | Gantt, Brett, McDonald, Kelsey, Henderson, Barron, Mannshardt, Elizabeth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339729/ https://www.ncbi.nlm.nih.gov/pubmed/32637171 http://dx.doi.org/10.3390/atmos11010103 |
Ejemplares similares
-
A Bayesian Downscaler Model to Estimate Daily PM(2.5) Levels in the Conterminous US
por: Wang, Yikai, et al.
Publicado: (2018) -
Spatial interpolation of regional PM(2.5) concentrations in China during COVID-19 incorporating multivariate data
por: Wei, Pengzhi, et al.
Publicado: (2023) -
Eigenvector Spatial Filtering Regression Modeling of Ground PM(2.5) Concentrations Using Remotely Sensed Data
por: Zhang, Jingyi, et al.
Publicado: (2018) -
Exploring Spatial Influence of Remotely Sensed PM(2.5) Concentration Using a Developed Deep Convolutional Neural Network Model
por: Li, Junming, et al.
Publicado: (2019) -
Spatial Autocorrelation and Temporal Convergence of PM(2.5) Concentrations in Chinese Cities
por: Wang, Huan, et al.
Publicado: (2022)