Cargando…

Neuroprotective effect of tormentic acid against memory impairment and neuro-inflammation in an Alzheimer's disease mouse model

Cognitive impairment and neuro-inflammatory responses are the distinctive characteristics of Alzheimer's disease (AD). Tormentic acid (TA) is one of the major active components of Potentilla chinensis and has been demonstrated to have anti-inflammatory properties. However, the potential effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Weigang, Sun, Chunli, Ma, Yuqi, Wang, Songtao, Wang, Xianwei, Zhang, Yinghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339752/
https://www.ncbi.nlm.nih.gov/pubmed/32468017
http://dx.doi.org/10.3892/mmr.2020.11154
Descripción
Sumario:Cognitive impairment and neuro-inflammatory responses are the distinctive characteristics of Alzheimer's disease (AD). Tormentic acid (TA) is one of the major active components of Potentilla chinensis and has been demonstrated to have anti-inflammatory properties. However, the potential effects of TA on neuro-inflammatory responses and memory impairment in AD remain unknown. The present study investigated the therapeutic effect of TA on neuro-inflammation, as well as learning and memory impairment in AD mice. In addition, the effects of TA treatment were also examined in a co-culture system of microglia and primary neurons. Intraperitoneal administration of TA attenuated memory deficits in amyloid β precursor protein/presenilin 1 transgenic mice, with a marked decrease in amyloid plaque deposition. TA also reduced microglial activation and decreased the secretion of pro-inflammatory factors in AD mice. Furthermore, pre-treatment with TA suppressed the production of pro-inflammatory markers, as well as the nuclear translocation of nuclear factor-κB (NF-κB) p65 induced by Aβ exposure in BV2 cells. TA also reduced inhibited neurotoxicity and improved neuron survival in a neuron-microglia co-culture system. Taken together, these findings suggested that TA could attenuate neuro-inflammation and memory impairment, which may be closely associated with regulation of the NF-κB pathway.