Cargando…

Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?()

This paper develops a computational framework for inverting Gompertz–Makeham mortality hazard rates, consistent with compensation laws of mortality for heterogeneous populations, to define a longevity-risk-adjusted global (L-RaG) age. To illustrate its salience and possible applications, the paper c...

Descripción completa

Detalles Bibliográficos
Autor principal: Milevsky, Moshe A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339829/
https://www.ncbi.nlm.nih.gov/pubmed/32834258
http://dx.doi.org/10.1016/j.insmatheco.2020.03.009
Descripción
Sumario:This paper develops a computational framework for inverting Gompertz–Makeham mortality hazard rates, consistent with compensation laws of mortality for heterogeneous populations, to define a longevity-risk-adjusted global (L-RaG) age. To illustrate its salience and possible applications, the paper calibrates and presents L-RaG values using country data from the Human Mortality Database (HMD). Among other things, the author demonstrates that when properly benchmarked, the longevity-risk-adjusted global age of a 55-year-old Swedish male is 48, whereas a 55-year-old Russian male is closer in age to 67. The paper also discusses the connection between the proposed L-RaG age and the related concept of Biological age, from the medical and gerontology literature. Practically speaking, in a world of growing mortality heterogeneity, the L-RaG age could be used for pension and retirement policy. In the language of behavioral finance and economics, a salient metric that adjusts chronological age for longevity risk might help capture the public’s attention, educate them about lifetime uncertainty and induce many of them to take action — such as working longer and/or retiring later.