Cargando…
Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
In the last few years, spiking neural networks (SNNs) have been demonstrated to perform on par with regular convolutional neural networks. Several works have proposed methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice of performance. We demonstrate first that quant...
Autores principales: | Sorbaro, Martino, Liu, Qian, Bortone, Massimo, Sheik, Sadique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339957/ https://www.ncbi.nlm.nih.gov/pubmed/32694978 http://dx.doi.org/10.3389/fnins.2020.00662 |
Ejemplares similares
-
Adversarial attacks on spiking convolutional neural networks for event-based vision
por: Büchel, Julian, et al.
Publicado: (2022) -
EXODUS: Stable and efficient training of spiking neural networks
por: Bauer, Felix C., et al.
Publicado: (2023) -
Editorial: Synaptic Plasticity for Neuromorphic Systems
por: Mayr, Christian G., et al.
Publicado: (2016) -
Autonomous driving controllers with neuromorphic spiking neural networks
por: Halaly, Raz, et al.
Publicado: (2023) -
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
por: Stefanini, Fabio, et al.
Publicado: (2014)