Cargando…
Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization
Spiking Neural Networks (SNNs) may offer an energy-efficient alternative for implementing deep learning applications. In recent years, there have been several proposals focused on supervised (conversion, spike-based gradient descent) and unsupervised (spike timing dependent plasticity) training meth...
Autores principales: | Panda, Priyadarshini, Aketi, Sai Aparna, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7339963/ https://www.ncbi.nlm.nih.gov/pubmed/32694977 http://dx.doi.org/10.3389/fnins.2020.00653 |
Ejemplares similares
-
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2016) -
Correction: Corrigendum: Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons
por: Sengupta, Abhronil, et al.
Publicado: (2017) -
Residual and Past Discrete Tsallis and Renyi Extropy with an Application to Softmax Function
por: Jawa, Taghreed M., et al.
Publicado: (2022) -
Deep Classification with Linearity-Enhanced Logits to Softmax Function
por: Shao, Hao, et al.
Publicado: (2023) -
Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
por: Panda, Priyadarshini, et al.
Publicado: (2017)