Cargando…
Compatibility Evaluation of Clustering Algorithms for Contemporary Extracellular Neural Spike Sorting
Deciphering useful information from electrophysiological data recorded from the brain, in-vivo or in-vitro, is dependent on the capability to analyse spike patterns efficiently and accurately. The spike analysis mechanisms are heavily reliant on the clustering algorithms that enable separation of sp...
Autores principales: | Veerabhadrappa, Rakesh, Ul Hassan, Masood, Zhang, James, Bhatti, Asim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340107/ https://www.ncbi.nlm.nih.gov/pubmed/32714155 http://dx.doi.org/10.3389/fnsys.2020.00034 |
Ejemplares similares
-
Efficient neural spike sorting using data subdivision and unification
por: Ul Hassan, Masood, et al.
Publicado: (2021) -
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2016) -
Unified selective sorting approach to analyse multi-electrode extracellular data
por: Veerabhadrappa, R., et al.
Publicado: (2016) -
Improved space breakdown method – A robust clustering technique for spike sorting
por: Ardelean, Eugen-Richard, et al.
Publicado: (2023) -
Corrigendum: Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2017)