Cargando…
A self-supervised workflow for particle picking in cryo-EM
High-resolution single-particle cryo-EM data analysis relies on accurate particle picking. To facilitate the particle picking process, a self-supervised workflow has been developed. This includes an iterative strategy, which uses a 2D class average to improve training particles, and a progressively...
Autores principales: | McSweeney, Donal M., McSweeney, Sean M., Liu, Qun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340252/ https://www.ncbi.nlm.nih.gov/pubmed/32695418 http://dx.doi.org/10.1107/S2052252520007241 |
Ejemplares similares
-
Cryo-EM structure of transmembrane AAA+ protease FtsH in the ADP state
por: Liu, Wu, et al.
Publicado: (2022) -
The evolution of SPHIRE-crYOLO particle picking and its application in automated cryo-EM processing workflows
por: Wagner, Thorsten, et al.
Publicado: (2020) -
Keratinocyte Skin Cancers in General Surgery: The Impact of Anaesthesia, Trainee Supervision, and Choice of Reconstruction
por: McSweeney, William, et al.
Publicado: (2021) -
Benchmarking cryo-EM Single Particle Analysis Workflow
por: Kim, Laura Y., et al.
Publicado: (2018) -
CryoTransformer: A Transformer Model for Picking Protein Particles from Cryo-EM Micrographs
por: Dhakal, Ashwin, et al.
Publicado: (2023)