Cargando…

Heatmap centrality: A new measure to identify super-spreader nodes in scale-free networks

The identification of potential super-spreader nodes within a network is a critical part of the study and analysis of real-world networks. Motivated by a new interpretation of the “shortest path” between two nodes, this paper explores the properties of the heatmap centrality by comparing the farness...

Descripción completa

Detalles Bibliográficos
Autor principal: Durón, Christina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340304/
https://www.ncbi.nlm.nih.gov/pubmed/32634158
http://dx.doi.org/10.1371/journal.pone.0235690
Descripción
Sumario:The identification of potential super-spreader nodes within a network is a critical part of the study and analysis of real-world networks. Motivated by a new interpretation of the “shortest path” between two nodes, this paper explores the properties of the heatmap centrality by comparing the farness of a node with the average sum of farness of its adjacent nodes in order to identify influential nodes within the network. As many real-world networks are often claimed to be scale-free, numerical experiments based upon both simulated and real-world undirected and unweighted scale-free networks are used to illustrate the effectiveness of the proposed “shortest path” based measure with regards to its CPU run time and ranking of influential nodes.