Cargando…

Effects of different separation methods on the physical and functional properties of extracellular vesicles

Extracellular vesicles (EVs) are small vesicles secreted from cells. They have crucial biological functions in intercellular communications and may even be biomarkers for cancer. The various methods used to isolate EVs from body fluid and cell culture supernatant have been compared in prior studies,...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Hyungtaek, Kang, Su-Kyung, Lee, Myung-Shin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340315/
https://www.ncbi.nlm.nih.gov/pubmed/32634162
http://dx.doi.org/10.1371/journal.pone.0235793
_version_ 1783555029833089024
author Jeon, Hyungtaek
Kang, Su-Kyung
Lee, Myung-Shin
author_facet Jeon, Hyungtaek
Kang, Su-Kyung
Lee, Myung-Shin
author_sort Jeon, Hyungtaek
collection PubMed
description Extracellular vesicles (EVs) are small vesicles secreted from cells. They have crucial biological functions in intercellular communications and may even be biomarkers for cancer. The various methods used to isolate EVs from body fluid and cell culture supernatant have been compared in prior studies, which determined that the component yield and physical properties of isolated EVs depend largely on the isolation method used. Several novel and combined methods have been recently developed, which have not yet been compared to the established methods. Therefore, the purpose of this study is to compare the physical and functional differences in EVs isolated using a differential centrifugation method, the precipitation-based Invitrogen kit, the ExoLutE kit, and the Exodisc, of which the latter two were recently developed. We investigated the properties of EVs isolated from non-infected and Kaposi’s sarcoma-associated herpesvirus-infected human umbilical vein endothelial cells using each method and determined the yields of DNA, RNA, and proteins using quantitative polymerase chain reaction and bicinchoninic acid assays. Additionally, we determined whether the biological activity of EVs correlated with the quantity or physical properties of the EVs isolated using different methods. We found that Exodisc was the most suitable method for obtaining large quantities of EVs, which might be useful for biomarker investigations, and that the EVs separated using Exodisc exhibited the highest complement activation activity. However, we also found that the functional properties of EVs were best maintained when differential centrifugation was used. Effective isolation is necessary to study EVs as tools for diagnosing cancer and our findings may have relevant implications in the field of oncology by providing researchers with data to assist their selection of a suitable isolation method.
format Online
Article
Text
id pubmed-7340315
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73403152020-07-17 Effects of different separation methods on the physical and functional properties of extracellular vesicles Jeon, Hyungtaek Kang, Su-Kyung Lee, Myung-Shin PLoS One Research Article Extracellular vesicles (EVs) are small vesicles secreted from cells. They have crucial biological functions in intercellular communications and may even be biomarkers for cancer. The various methods used to isolate EVs from body fluid and cell culture supernatant have been compared in prior studies, which determined that the component yield and physical properties of isolated EVs depend largely on the isolation method used. Several novel and combined methods have been recently developed, which have not yet been compared to the established methods. Therefore, the purpose of this study is to compare the physical and functional differences in EVs isolated using a differential centrifugation method, the precipitation-based Invitrogen kit, the ExoLutE kit, and the Exodisc, of which the latter two were recently developed. We investigated the properties of EVs isolated from non-infected and Kaposi’s sarcoma-associated herpesvirus-infected human umbilical vein endothelial cells using each method and determined the yields of DNA, RNA, and proteins using quantitative polymerase chain reaction and bicinchoninic acid assays. Additionally, we determined whether the biological activity of EVs correlated with the quantity or physical properties of the EVs isolated using different methods. We found that Exodisc was the most suitable method for obtaining large quantities of EVs, which might be useful for biomarker investigations, and that the EVs separated using Exodisc exhibited the highest complement activation activity. However, we also found that the functional properties of EVs were best maintained when differential centrifugation was used. Effective isolation is necessary to study EVs as tools for diagnosing cancer and our findings may have relevant implications in the field of oncology by providing researchers with data to assist their selection of a suitable isolation method. Public Library of Science 2020-07-07 /pmc/articles/PMC7340315/ /pubmed/32634162 http://dx.doi.org/10.1371/journal.pone.0235793 Text en © 2020 Jeon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jeon, Hyungtaek
Kang, Su-Kyung
Lee, Myung-Shin
Effects of different separation methods on the physical and functional properties of extracellular vesicles
title Effects of different separation methods on the physical and functional properties of extracellular vesicles
title_full Effects of different separation methods on the physical and functional properties of extracellular vesicles
title_fullStr Effects of different separation methods on the physical and functional properties of extracellular vesicles
title_full_unstemmed Effects of different separation methods on the physical and functional properties of extracellular vesicles
title_short Effects of different separation methods on the physical and functional properties of extracellular vesicles
title_sort effects of different separation methods on the physical and functional properties of extracellular vesicles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340315/
https://www.ncbi.nlm.nih.gov/pubmed/32634162
http://dx.doi.org/10.1371/journal.pone.0235793
work_keys_str_mv AT jeonhyungtaek effectsofdifferentseparationmethodsonthephysicalandfunctionalpropertiesofextracellularvesicles
AT kangsukyung effectsofdifferentseparationmethodsonthephysicalandfunctionalpropertiesofextracellularvesicles
AT leemyungshin effectsofdifferentseparationmethodsonthephysicalandfunctionalpropertiesofextracellularvesicles