Cargando…
A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MPDI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340489/ https://www.ncbi.nlm.nih.gov/pubmed/32704488 http://dx.doi.org/10.3390/rs9101048 |
_version_ | 1783555048283832320 |
---|---|
author | Stratoulias, Dimitris Tolpekin, Valentyn de By, Rolf A. Zurita—Milla, Raul Retsios, Vasilios Bijker, Wietske Alfi Hasan, Mohammad Vermote, Eric |
author_facet | Stratoulias, Dimitris Tolpekin, Valentyn de By, Rolf A. Zurita—Milla, Raul Retsios, Vasilios Bijker, Wietske Alfi Hasan, Mohammad Vermote, Eric |
author_sort | Stratoulias, Dimitris |
collection | PubMed |
description | Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolutions. The available bulk of data, fostered by open access policies adopted by several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are important aspects of data processing. This study presents a fully automated workflow able to process a large collection of very high spatial resolution satellite images to produce actionable information in the application framework of smallholder farming. The workflow applies sequential image processing, extracts meaningful statistical information from agricultural parcels, and stores them in a crop spectrotemporal signature library. An important objective is to follow crop development through the season by analyzing multi—temporal and multi—sensor images. The workflow is based on free and open—source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on a multi—sensor image archive of over 270 VHSR WorldView—2, —3, QuickBird, GeoEye, and RapidEye images acquired over five different study areas where smallholder agriculture prevails. |
format | Online Article Text |
id | pubmed-7340489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MPDI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73404892020-07-21 A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture Stratoulias, Dimitris Tolpekin, Valentyn de By, Rolf A. Zurita—Milla, Raul Retsios, Vasilios Bijker, Wietske Alfi Hasan, Mohammad Vermote, Eric Remote Sens (Basel) Technical Note Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolutions. The available bulk of data, fostered by open access policies adopted by several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are important aspects of data processing. This study presents a fully automated workflow able to process a large collection of very high spatial resolution satellite images to produce actionable information in the application framework of smallholder farming. The workflow applies sequential image processing, extracts meaningful statistical information from agricultural parcels, and stores them in a crop spectrotemporal signature library. An important objective is to follow crop development through the season by analyzing multi—temporal and multi—sensor images. The workflow is based on free and open—source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on a multi—sensor image archive of over 270 VHSR WorldView—2, —3, QuickBird, GeoEye, and RapidEye images acquired over five different study areas where smallholder agriculture prevails. MPDI 2017-10-14 2017 /pmc/articles/PMC7340489/ /pubmed/32704488 http://dx.doi.org/10.3390/rs9101048 Text en © 2017 The Author(s). http://creativecommons.org/licenses/by/4.0/ Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Technical Note Stratoulias, Dimitris Tolpekin, Valentyn de By, Rolf A. Zurita—Milla, Raul Retsios, Vasilios Bijker, Wietske Alfi Hasan, Mohammad Vermote, Eric A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title | A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title_full | A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title_fullStr | A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title_full_unstemmed | A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title_short | A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture |
title_sort | workflow for automated satellite image processing: from raw vhsr data to object-based spectral information for smallholder agriculture |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340489/ https://www.ncbi.nlm.nih.gov/pubmed/32704488 http://dx.doi.org/10.3390/rs9101048 |
work_keys_str_mv | AT stratouliasdimitris aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT tolpekinvalentyn aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT debyrolfa aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT zuritamillaraul aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT retsiosvasilios aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT bijkerwietske aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT alfihasanmohammad aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT vermoteeric aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT stratouliasdimitris workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT tolpekinvalentyn workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT debyrolfa workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT zuritamillaraul workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT retsiosvasilios workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT bijkerwietske workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT alfihasanmohammad workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture AT vermoteeric workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture |