Cargando…

A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture

Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolu...

Descripción completa

Detalles Bibliográficos
Autores principales: Stratoulias, Dimitris, Tolpekin, Valentyn, de By, Rolf A., Zurita—Milla, Raul, Retsios, Vasilios, Bijker, Wietske, Alfi Hasan, Mohammad, Vermote, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MPDI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340489/
https://www.ncbi.nlm.nih.gov/pubmed/32704488
http://dx.doi.org/10.3390/rs9101048
_version_ 1783555048283832320
author Stratoulias, Dimitris
Tolpekin, Valentyn
de By, Rolf A.
Zurita—Milla, Raul
Retsios, Vasilios
Bijker, Wietske
Alfi Hasan, Mohammad
Vermote, Eric
author_facet Stratoulias, Dimitris
Tolpekin, Valentyn
de By, Rolf A.
Zurita—Milla, Raul
Retsios, Vasilios
Bijker, Wietske
Alfi Hasan, Mohammad
Vermote, Eric
author_sort Stratoulias, Dimitris
collection PubMed
description Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolutions. The available bulk of data, fostered by open access policies adopted by several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are important aspects of data processing. This study presents a fully automated workflow able to process a large collection of very high spatial resolution satellite images to produce actionable information in the application framework of smallholder farming. The workflow applies sequential image processing, extracts meaningful statistical information from agricultural parcels, and stores them in a crop spectrotemporal signature library. An important objective is to follow crop development through the season by analyzing multi—temporal and multi—sensor images. The workflow is based on free and open—source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on a multi—sensor image archive of over 270 VHSR WorldView—2, —3, QuickBird, GeoEye, and RapidEye images acquired over five different study areas where smallholder agriculture prevails.
format Online
Article
Text
id pubmed-7340489
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MPDI
record_format MEDLINE/PubMed
spelling pubmed-73404892020-07-21 A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture Stratoulias, Dimitris Tolpekin, Valentyn de By, Rolf A. Zurita—Milla, Raul Retsios, Vasilios Bijker, Wietske Alfi Hasan, Mohammad Vermote, Eric Remote Sens (Basel) Technical Note Earth Observation has become a progressively important source of information for land use and land cover services over the past decades. At the same time, an increasing number of reconnaissance satellites have been set in orbit with ever increasing spatial, temporal, spectral, and radiometric resolutions. The available bulk of data, fostered by open access policies adopted by several agencies, is setting a new landscape in remote sensing in which timeliness and efficiency are important aspects of data processing. This study presents a fully automated workflow able to process a large collection of very high spatial resolution satellite images to produce actionable information in the application framework of smallholder farming. The workflow applies sequential image processing, extracts meaningful statistical information from agricultural parcels, and stores them in a crop spectrotemporal signature library. An important objective is to follow crop development through the season by analyzing multi—temporal and multi—sensor images. The workflow is based on free and open—source software, namely R, Python, Linux shell scripts, the Geospatial Data Abstraction Library, custom FORTRAN, C++, and the GNU Make utilities. We tested and applied this workflow on a multi—sensor image archive of over 270 VHSR WorldView—2, —3, QuickBird, GeoEye, and RapidEye images acquired over five different study areas where smallholder agriculture prevails. MPDI 2017-10-14 2017 /pmc/articles/PMC7340489/ /pubmed/32704488 http://dx.doi.org/10.3390/rs9101048 Text en © 2017 The Author(s). http://creativecommons.org/licenses/by/4.0/ Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Technical Note
Stratoulias, Dimitris
Tolpekin, Valentyn
de By, Rolf A.
Zurita—Milla, Raul
Retsios, Vasilios
Bijker, Wietske
Alfi Hasan, Mohammad
Vermote, Eric
A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title_full A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title_fullStr A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title_full_unstemmed A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title_short A Workflow for Automated Satellite Image Processing: from Raw VHSR Data to Object-Based Spectral Information for Smallholder Agriculture
title_sort workflow for automated satellite image processing: from raw vhsr data to object-based spectral information for smallholder agriculture
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340489/
https://www.ncbi.nlm.nih.gov/pubmed/32704488
http://dx.doi.org/10.3390/rs9101048
work_keys_str_mv AT stratouliasdimitris aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT tolpekinvalentyn aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT debyrolfa aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT zuritamillaraul aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT retsiosvasilios aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT bijkerwietske aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT alfihasanmohammad aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT vermoteeric aworkflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT stratouliasdimitris workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT tolpekinvalentyn workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT debyrolfa workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT zuritamillaraul workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT retsiosvasilios workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT bijkerwietske workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT alfihasanmohammad workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture
AT vermoteeric workflowforautomatedsatelliteimageprocessingfromrawvhsrdatatoobjectbasedspectralinformationforsmallholderagriculture