Cargando…
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically...
Autores principales: | Leelatian, Nalin, Sinnaeve, Justine, Mistry, Akshitkumar M, Barone, Sierra M, Brockman, Asa A, Diggins, Kirsten E, Greenplate, Allison R, Weaver, Kyle D, Thompson, Reid C, Chambless, Lola B, Mobley, Bret C, Ihrie, Rebecca A, Irish, Jonathan M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340505/ https://www.ncbi.nlm.nih.gov/pubmed/32573435 http://dx.doi.org/10.7554/eLife.56879 |
Ejemplares similares
-
An immunosuppressed microenvironment distinguishes lateral ventricle–contacting glioblastomas
por: Bartkowiak, Todd, et al.
Publicado: (2023) -
Location-dependent maintenance of intrinsic susceptibility to mTORC1-driven tumorigenesis
por: Rushing, Gabrielle V, et al.
Publicado: (2019) -
Characterizing cell subsets in heterogeneous tissues using marker enrichment modeling
por: Diggins, K. E., et al.
Publicado: (2017) -
Ventricular-Subventricular Zone Contact by Glioblastoma is Not Associated with Molecular Signatures in Bulk Tumor Data
por: Mistry, Akshitkumar M., et al.
Publicado: (2019) -
Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy
por: Barone, Sierra M, et al.
Publicado: (2021)