Cargando…
Heavy metals in submicronic particulate matter (PM(1)) from a Chinese metropolitan city predicted by machine learning models
The aim of this study was to establish a method for predicting heavy metal concentrations in PM(1) (aerosol particles with an aerodynamic diameter ≤ 1.0 μm) based on back propagation artificial neural network (BP-ANN) and support vector machine (SVM) methods. The annual average PM(1) concentration w...
Autores principales: | Li, Huiming, Dai, Qian’ying, Yang, Meng, Li, Fengying, Liu, Xuemei, Zhou, Mengfan, Qian, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340598/ https://www.ncbi.nlm.nih.gov/pubmed/32721685 http://dx.doi.org/10.1016/j.chemosphere.2020.127571 |
Ejemplares similares
-
Biomagnetic monitoring combined with support vector machine: a new opportunity for predicting particle-bound-heavy metals
por: Dai, Qian’ying, et al.
Publicado: (2020) -
Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants
por: Zajusz-Zubek, Elwira, et al.
Publicado: (2015) -
Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants
por: Zajusz-Zubek, Elwira, et al.
Publicado: (2017) -
Spatiotemporal patterns of particulate matter (PM) and associations between PM and mortality in Shenzhen, China
por: Zhang, Fengying, et al.
Publicado: (2016) -
Fine particulate matter (PM(2.5)) in China at a city level
por: Zhang, Yan-Lin, et al.
Publicado: (2015)