Cargando…

Classifying Simplicial Dissections of Convex Polyhedra with Symmetry

A convex polyhedron is the convex hull of a finite set of points in [Formula: see text] A triangulation of a convex polyhedron is a decomposition into a finite number of 3-simplices such that any two intersect in a common face or are disjoint. A simplicial dissection is a decomposition into a finite...

Descripción completa

Detalles Bibliográficos
Autores principales: Betten, Anton, Mukthineni, Tarun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340891/
http://dx.doi.org/10.1007/978-3-030-52200-1_14
Descripción
Sumario:A convex polyhedron is the convex hull of a finite set of points in [Formula: see text] A triangulation of a convex polyhedron is a decomposition into a finite number of 3-simplices such that any two intersect in a common face or are disjoint. A simplicial dissection is a decomposition into a finite number of 3-simplices such that no two share an interior point. We present an algorithm to classify the simplicial dissections of a regular polyhedron under the symmetry group of the prolyhedron.