Cargando…

Phase Portraits of Bi-dimensional Zeta Values

In this extended abstract, we present how to compute and visualize phase portraits of bi-dimensional Zeta Values. Such technology is useful to explore bi-dimensional Zeta Values and in long-term quest to discover a 2D-Riemann hypothesis. To reach this goal, we need two preliminary steps: [Formula: s...

Descripción completa

Detalles Bibliográficos
Autor principal: Bouillot, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340897/
http://dx.doi.org/10.1007/978-3-030-52200-1_39
Descripción
Sumario:In this extended abstract, we present how to compute and visualize phase portraits of bi-dimensional Zeta Values. Such technology is useful to explore bi-dimensional Zeta Values and in long-term quest to discover a 2D-Riemann hypothesis. To reach this goal, we need two preliminary steps: [Formula: see text] the notion of phase portraits and a general tool to visualize phase portrait based on interactive Jupyter widgets. [Formula: see text] the ability to compute numerical approximations of bi-dimensional Zeta values, using mpmath, a Python library for arbitrary-precision floating-point arithmetic. To this end, we develop a theory to numerically compute double sums and produce the first algorithm to compute bi-dimensional Zeta Values with complex parameters.