Cargando…
DermoNet: A Computer-Aided Diagnosis System for Dermoscopic Disease Recognition
The research of skin lesion diseases is currently one of the hottest topics in the medical research fields, and has gained a lot of attention on the last few years. However, the existing skin lesion methods are mainly relying on conventional Convolutional Neural Network (CNN) and the performance of...
Autores principales: | Bakkouri, Ibtissam, Afdel, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340898/ http://dx.doi.org/10.1007/978-3-030-51935-3_18 |
Ejemplares similares
-
MLCA2F: Multi-Level Context Attentional Feature Fusion for COVID-19 lesion segmentation from CT scans
por: Bakkouri, Ibtissam, et al.
Publicado: (2022) -
DermO; an ontology for the description of dermatologic disease
por: Fisher, Hannah M., et al.
Publicado: (2016) -
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions
por: Baig, Abdul Rauf, et al.
Publicado: (2023) -
Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions
por: Arshad, Sannia, et al.
Publicado: (2023) -
Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions
por: Foahom Gouabou, Arthur Cartel, et al.
Publicado: (2022)