Cargando…

The GAP Package LiePRing

A symbolic Lie p-ring defines a family of Lie rings with [Formula: see text] elements for infinitely many different primes p and a fixed positive integer n. Symbolic Lie p-rings are used to describe the classification of isomorphism types of nilpotent Lie rings of order [Formula: see text] for all p...

Descripción completa

Detalles Bibliográficos
Autores principales: Eick, Bettina, Vaughan-Lee, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340899/
http://dx.doi.org/10.1007/978-3-030-52200-1_13
_version_ 1783555117278035968
author Eick, Bettina
Vaughan-Lee, Michael
author_facet Eick, Bettina
Vaughan-Lee, Michael
author_sort Eick, Bettina
collection PubMed
description A symbolic Lie p-ring defines a family of Lie rings with [Formula: see text] elements for infinitely many different primes p and a fixed positive integer n. Symbolic Lie p-rings are used to describe the classification of isomorphism types of nilpotent Lie rings of order [Formula: see text] for all primes p and all [Formula: see text]. This classification is available as the LiePRing package of the computer algebra system GAP. We give a brief description of this package, including an approach towards computing the automorphism group of a symbolic Lie p-ring.
format Online
Article
Text
id pubmed-7340899
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-73408992020-07-08 The GAP Package LiePRing Eick, Bettina Vaughan-Lee, Michael Mathematical Software – ICMS 2020 Article A symbolic Lie p-ring defines a family of Lie rings with [Formula: see text] elements for infinitely many different primes p and a fixed positive integer n. Symbolic Lie p-rings are used to describe the classification of isomorphism types of nilpotent Lie rings of order [Formula: see text] for all primes p and all [Formula: see text]. This classification is available as the LiePRing package of the computer algebra system GAP. We give a brief description of this package, including an approach towards computing the automorphism group of a symbolic Lie p-ring. 2020-06-06 /pmc/articles/PMC7340899/ http://dx.doi.org/10.1007/978-3-030-52200-1_13 Text en © Springer Nature Switzerland AG 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Eick, Bettina
Vaughan-Lee, Michael
The GAP Package LiePRing
title The GAP Package LiePRing
title_full The GAP Package LiePRing
title_fullStr The GAP Package LiePRing
title_full_unstemmed The GAP Package LiePRing
title_short The GAP Package LiePRing
title_sort gap package liepring
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340899/
http://dx.doi.org/10.1007/978-3-030-52200-1_13
work_keys_str_mv AT eickbettina thegappackageliepring
AT vaughanleemichael thegappackageliepring
AT eickbettina gappackageliepring
AT vaughanleemichael gappackageliepring