Cargando…
A Machine Learning Based Software Pipeline to Pick the Variable Ordering for Algorithms with Polynomial Inputs
We are interested in the application of Machine Learning (ML) technology to improve mathematical software. It may seem that the probabilistic nature of ML tools would invalidate the exact results prized by such software, however, the algorithms which underpin the software often come with a range of...
Autores principales: | Florescu, Dorian, England, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340908/ http://dx.doi.org/10.1007/978-3-030-52200-1_30 |
Ejemplares similares
-
Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials
por: AL-Utaibi, Khaled A., et al.
Publicado: (2021) -
High-Speed Variable Polynomial Toeplitz Hash Algorithm Based on FPGA
por: Huang, Si-Cheng, et al.
Publicado: (2023) -
Validation pipeline for machine learning algorithm assessment for multiple vendors
por: Bizzo, Bernardo C., et al.
Publicado: (2022) -
Optimization of Thurston’s Core Entropy Algorithm for Polynomials with a Critical Point of Maximal Order
por: Blé, Gamaliel, et al.
Publicado: (2018) -
Statistical machine learning for comparative protein dynamics with the DROIDS/maxDemon software pipeline
por: Babbitt, Gregory A., et al.
Publicado: (2022)