Cargando…
Machine Learning-Based Classification of Powdery Mildew Severity on Melon Leaves
Precision agriculture faces challenges related to plant disease detection. Plant phenotyping assesses the appearance to select the best genotypes that resist to varying environmental conditions via plant variety testing. In this process, official plant variety tests are currently performed in vitro...
Autores principales: | El Abidine, Mouad Zine, Merdinoglu-Wiedemann, Sabine, Rasti, Pejman, Dutagaci, Helin, Rousseau, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340913/ http://dx.doi.org/10.1007/978-3-030-51935-3_8 |
Ejemplares similares
-
ROSE-X: an annotated data set for evaluation of 3D plant organ segmentation methods
por: Dutagaci, Helin, et al.
Publicado: (2020) -
Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.)
por: Possamai, Tyrone, et al.
Publicado: (2021) -
Fungal Development and Callose Deposition in Compatible and Incompatible Interactions in Melon Infected with Powdery Mildew
por: Beraldo-Hoischen, Paola, et al.
Publicado: (2021) -
Identification of Two New Races of Podosphaera xanthii Causing Powdery Mildew in Melon in South Korea
por: Hong, Ye-Ji, et al.
Publicado: (2018) -
Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo)
por: Wang, Yu-Hua, et al.
Publicado: (2016)