Cargando…

Applying Machine Learning to Heuristics for Real Polynomial Constraint Solving

This paper considers the application of machine learning to automatically generating heuristics for real polynomial constraint solvers. We consider a specific choice-point in the algorithm for constructing an open Non-uniform Cylindrical Algebraic Decomposition (NuCAD) for a conjunction of constrain...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Christopher W., Daves, Glenn Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340921/
http://dx.doi.org/10.1007/978-3-030-52200-1_29
Descripción
Sumario:This paper considers the application of machine learning to automatically generating heuristics for real polynomial constraint solvers. We consider a specific choice-point in the algorithm for constructing an open Non-uniform Cylindrical Algebraic Decomposition (NuCAD) for a conjunction of constraints, and we learn a heuristic for making that choice. Experiments demonstrate the effectiveness of the learned heuristic. We hope that the approach we take to learning this heuristic, which is not a natural fit to machine learning, can be applied effectively to other choices in constraint solving algorithms.