Cargando…
Discovering Unknown Diseases with Explainable Automated Medical Imaging
Deep neural network (DNN) classifiers have attained remarkable performance in diagnosing known diseases when the models are trained on a large amount of data from known diseases. However, DNN classifiers trained on known diseases usually fail when they confront new diseases such as COVID-19. In this...
Autor principal: | Tang, Claire |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340943/ http://dx.doi.org/10.1007/978-3-030-52791-4_27 |
Ejemplares similares
-
Learning to Discover Explainable Clinical Features With Minimum Supervision
por: Al Turk, Lutfiah, et al.
Publicado: (2022) -
Discovering Key Sub-Trajectories to Explain Traffic Prediction
por: Wang, Hongjun, et al.
Publicado: (2022) -
SNP-SNP Interactions Discovered by Logic Regression Explain Crohn's Disease Genetics
por: Dinu, Irina, et al.
Publicado: (2012) -
Automated acquisition of explainable knowledge from unannotated histopathology images
por: Yamamoto, Yoichiro, et al.
Publicado: (2019) -
Exposure to automation explains religious declines
por: Jackson, Joshua Conrad, et al.
Publicado: (2023)