Cargando…
Handwriting Based Gender Classification Using COLD and Hinge Features
Gender Classification from handwriting is still considered to be challenging due to homogeneous vision comparing male and female handwritten documents. This paper presents a new method based on Cloud of Line Distribution (COLD) and Hinge feature for distinguishing the gender from handwriting. The SV...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340951/ http://dx.doi.org/10.1007/978-3-030-51935-3_25 |
Sumario: | Gender Classification from handwriting is still considered to be challenging due to homogeneous vision comparing male and female handwritten documents. This paper presents a new method based on Cloud of Line Distribution (COLD) and Hinge feature for distinguishing the gender from handwriting. The SVM classifier combination decides the assigned class based on the maximum of the two decisions values resulting from COLD and Hinge feature. The proposed approach is evaluated on the standard QUWI dataset and following the framework protocol described in the ICFHR 2016 competition. Obtained results are promising regarding the classification rates announced in the literature. |
---|