Cargando…

Handwriting Based Gender Classification Using COLD and Hinge Features

Gender Classification from handwriting is still considered to be challenging due to homogeneous vision comparing male and female handwritten documents. This paper presents a new method based on Cloud of Line Distribution (COLD) and Hinge feature for distinguishing the gender from handwriting. The SV...

Descripción completa

Detalles Bibliográficos
Autores principales: Gattal, Abdeljalil, Djeddi, Chawki, Bensefia, Ameur, Ennaji, Abdellatif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340951/
http://dx.doi.org/10.1007/978-3-030-51935-3_25
Descripción
Sumario:Gender Classification from handwriting is still considered to be challenging due to homogeneous vision comparing male and female handwritten documents. This paper presents a new method based on Cloud of Line Distribution (COLD) and Hinge feature for distinguishing the gender from handwriting. The SVM classifier combination decides the assigned class based on the maximum of the two decisions values resulting from COLD and Hinge feature. The proposed approach is evaluated on the standard QUWI dataset and following the framework protocol described in the ICFHR 2016 competition. Obtained results are promising regarding the classification rates announced in the literature.