Cargando…

A New Method of Image Reconstruction for PET Using a Combined Regularization Algorithm

Positron emission tomography (PET), is a medical imaging technique that provides functional information about physiological processes. The goal of PET is to reconstruct the distribution of the radioisotopes in the body by measuring the emitted photons. The computer methods are designed to solve the...

Descripción completa

Detalles Bibliográficos
Autores principales: Boudjelal, Abdelwahhab, El Moataz, Abderrahim, Messali, Zoubeida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340954/
http://dx.doi.org/10.1007/978-3-030-51935-3_19
Descripción
Sumario:Positron emission tomography (PET), is a medical imaging technique that provides functional information about physiological processes. The goal of PET is to reconstruct the distribution of the radioisotopes in the body by measuring the emitted photons. The computer methods are designed to solve the inverse problem known as “image reconstruction from projections.” In this paper, an iterative image reconstruction algorithm ART was regularized by combining Tikhonov and total variation regularizations. In the first step, combined regularization algorithm of total variation and Tikhonov regularization was applied to the image obtained by ART algorithm in each iteration for background noise removal with preserving edges. The quality measurements and visual inspections show a significant improvement in image quality compared to other algorithms.