Cargando…

Fuzzy-Based Approach for Assessing Traffic Congestion in Urban Areas

The very rapid evolution of urban areas leads to a reflection on the citizens’ mobility inside the cities. This mobility problem is highlighted by the increase in terms of time, distance and social and economic costs, whereas the congestion management approach implemented rarely meets the road users...

Descripción completa

Detalles Bibliográficos
Autores principales: Berrouk, Sara, Fazziki, Abdelaziz El, Sadgal, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340959/
http://dx.doi.org/10.1007/978-3-030-51935-3_12
Descripción
Sumario:The very rapid evolution of urban areas leads to a reflection on the citizens’ mobility inside the cities. This mobility problem is highlighted by the increase in terms of time, distance and social and economic costs, whereas the congestion management approach implemented rarely meets the road users’ expectations. To overcome this problem, a novel approach for evaluating urban traffic congestion is proposed. Factors such as the imprecision of traffic records, the user’s perception of the road’s level of service provided and variation in sample data are mandatory to describe the real traffic condition. To respond to these requirements, a fuzzy inference-based method is suggested. It combines three independent congestion measures which are: speed ratio, volume to capacity ratio and decreased speed ratio into a single composite measure which is the congestion index. To run the proposed fuzzy model, the traffic dataset of Austin-Texas is used. Although it is still not possible to determine the best congestion measure, the proposed approach gives a composite aspect of traffic congestion by combining and incorporating the uncertainty of the three independent measures.