Cargando…
On detecting urgency in short crisis messages using minimal supervision and transfer learning
Humanitarian disasters have been on the rise in recent years due to the effects of climate change and socio-political situations such as the refugee crisis. Technology can be used to best mobilize resources such as food and water in the event of a natural disaster, by semi-automatically flagging twe...
Autores principales: | Kejriwal, Mayank, Zhou, Peilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341028/ https://www.ncbi.nlm.nih.gov/pubmed/32834866 http://dx.doi.org/10.1007/s13278-020-00670-7 |
Ejemplares similares
-
Health Rights and the Urgency of the Climate Crisis
por: Williams, Carmel, et al.
Publicado: (2021) -
Predicting zip code-level vaccine hesitancy in US Metropolitan Areas using machine learning models on public tweets
por: Melotte, Sara, et al.
Publicado: (2022) -
13124 COVID-19: The Urgency of Engaging during Crisis
por: Bohn, Krista, et al.
Publicado: (2021) -
On using centrality to understand importance of entities in the Panama Papers
por: Kejriwal, Mayank
Publicado: (2021) -
Assessment of supervised classifiers for the task of detecting messages with suicidal ideation
por: Acuña Caicedo, Roberto Wellington, et al.
Publicado: (2020)