Cargando…
Solution–Liquid–Solid Growth and Catalytic Applications of Silica Nanorod Arrays
As an analogue to the vapor–liquid–solid process, the solution–liquid–solid (SLS) method offers a mild solution‐phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. However, direct growth of 1D nanostructure arrays through SLS processes remains in its infan...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341079/ https://www.ncbi.nlm.nih.gov/pubmed/32670762 http://dx.doi.org/10.1002/advs.202000310 |
Sumario: | As an analogue to the vapor–liquid–solid process, the solution–liquid–solid (SLS) method offers a mild solution‐phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. However, direct growth of 1D nanostructure arrays through SLS processes remains in its infancy. Herein, this study shows that SLS processes are also suitable for the growth of nanorod arrays on the substrate. As a proof of concept, seedless growth of silica nanorod arrays on a variety of hydrophilic substrates such as pristine and oxide‐modified glass, metal sheets, Si wafers, and biaxially oriented polypropylene film are demonstrated. Also, the silica nanorod arrays can be used as a new platform for the fabrication of catalysts for photothermal CO(2) hydrogenation and the reduction of 4‐nitrophenol reactions. This work offers some fundamental insight into the SLS growth process and opens a new avenue for the mild preparation of functional 1D nanostructure arrays for various applications. |
---|