Cargando…
Comparison of the Vertical Force Distribution in the Paws of Dogs with Coxarthrosis and Sound Dogs Walking over a Pressure Plate
SIMPLE SUMMARY: The study of biomechanics for dogs with coxarthrosis is an important tool for diagnosis and treatment evaluation. Seeking a better view of the load distribution during the gait in dogs with coxarthrosis, we used a pressure plate to measure the vertical forces in the paws. The results...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341499/ https://www.ncbi.nlm.nih.gov/pubmed/32517105 http://dx.doi.org/10.3390/ani10060986 |
Sumario: | SIMPLE SUMMARY: The study of biomechanics for dogs with coxarthrosis is an important tool for diagnosis and treatment evaluation. Seeking a better view of the load distribution during the gait in dogs with coxarthrosis, we used a pressure plate to measure the vertical forces in the paws. The results suggested that walking dogs with coxarthrosis redistributed the load mainly to the caudal quadrants of the paws of the unaffected limbs. The performed methodology is another new possibility for the evaluation and clarification of biomechanical events in the course of coxarthrosis. ABSTRACT: In the present study, we used a pressure plate to investigate the ground reaction forces of limbs and the vertical force distribution (VFD) within the paws of dogs with coxarthrosis. We included 23 sound dogs (G(Sou)) and 23 dogs with hip osteoarthrosis (G(Cox)). The dogs walked over a pressure plate and the peak vertical force (PFz), vertical impulse (IFz) as the percentage of the total force, and time of occurrence of PFz as a percent of the stance phase duration (TPFz%) were evaluated, as well for the entire limb as in the paws (where the paws were divided into four quadrants). The G(Cox) presented a lower PFz% in the lame hind limb than in others and transferred the weight to the caudal quadrants of the front limbs. IFz% was lower in the lame limb and was counterbalanced through higher loading of the caudal quadrants in all unaffected limbs. TPFz% was reached later in the lame limb than in the contralateral limb and the G(Sou), specifically in the caudomedial quadrant. In conclusion, we found complex compensatory effects of lameness in the hind limb, and this methodology was useful to define the VFD within the paws of dogs. |
---|