Cargando…

UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish

SIMPLE SUMMARY: Zebrafish is a good in vivo model to study how skin responds to Ultraviolet B (UVB) irradiation at the cellular, molecular, and whole organism levels. Previous studies showed that zebrafish embryo fin undergoes extensive shrinkage after exposure to UVB irradiation, and this phenotypi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Rui-Yi, Lin, Chun-Ju, Liang, Sung-Tzu, Villalobos, Omar, Villaflores, Oliver B., Lou, Bao, Lai, Yu-Heng, Hsiao, Chung-Der
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341518/
https://www.ncbi.nlm.nih.gov/pubmed/32630437
http://dx.doi.org/10.3390/ani10061096
_version_ 1783555257507250176
author Chen, Rui-Yi
Lin, Chun-Ju
Liang, Sung-Tzu
Villalobos, Omar
Villaflores, Oliver B.
Lou, Bao
Lai, Yu-Heng
Hsiao, Chung-Der
author_facet Chen, Rui-Yi
Lin, Chun-Ju
Liang, Sung-Tzu
Villalobos, Omar
Villaflores, Oliver B.
Lou, Bao
Lai, Yu-Heng
Hsiao, Chung-Der
author_sort Chen, Rui-Yi
collection PubMed
description SIMPLE SUMMARY: Zebrafish is a good in vivo model to study how skin responds to Ultraviolet B (UVB) irradiation at the cellular, molecular, and whole organism levels. Previous studies showed that zebrafish embryo fin undergoes extensive shrinkage after exposure to UVB irradiation, and this phenotypic change can be assessed using antioxidant drugs. To provide more detailed chronological changes for zebrafish embryos after receiving UVB irradiation, sequential alterations of zebrafish embryos at morphological (fin), cellular (cell death, oxidative stress, immune-response, and marker gene expression) and molecular (microarray screen and real-time RT-PCR assay) levels were examined in this study. The results showed that junbb gene expression was activated as early as 3 h post-UVB irradiation, followed by significant elevation of apoptosis around 9 h post-UVB irradiation, neutrophil migration to the wound area approximately 14 h post-UVB irradiation, and activation of mmp gene expression at around 24 h post-UVB irradiation. These chronological cellular and molecular responses after UVB irradiation in zebrafish provide a basic and fundamental foundation for future line construction and UVB-associated gene validation. ABSTRACT: Ultraviolet B (UVB) radiation has drawn more attention over these past few decades since it causes severe DNA damage and induces inflammatory response. Serial gene profiling and high throughput data in UVB-associated phenomenon in human cultured cells or full rack of human skin have been investigated. However, results using different tissue models lead to ambiguity in UVB-induced pathways. In order to systematically understand the UVB-associated reactions, the zebrafish model was used, and whole organism gene profiling was performed to identify a novel biomarker which can be used to generate a new mechanistic approach for further screening on a UVB-related system biology. In this study, detailed morphological assays were performed to address biological response after receiving UVB irradiation at morphological, cellular, and molecular levels. Microarray screening and whole genome profiling revealed that there is an early onset expression of junbb in zebrafish embryos after UVB irradiation. Also, the identified novel biomarker junbb is more sensitive to UVB response than mmps which have been used in mouse models. Moreover, cellular and molecular response chronology after UVB irradiation in zebrafish provide a solid and fundamental mechanism for use in a UV radiation-associated study in the future.
format Online
Article
Text
id pubmed-7341518
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-73415182020-07-14 UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish Chen, Rui-Yi Lin, Chun-Ju Liang, Sung-Tzu Villalobos, Omar Villaflores, Oliver B. Lou, Bao Lai, Yu-Heng Hsiao, Chung-Der Animals (Basel) Article SIMPLE SUMMARY: Zebrafish is a good in vivo model to study how skin responds to Ultraviolet B (UVB) irradiation at the cellular, molecular, and whole organism levels. Previous studies showed that zebrafish embryo fin undergoes extensive shrinkage after exposure to UVB irradiation, and this phenotypic change can be assessed using antioxidant drugs. To provide more detailed chronological changes for zebrafish embryos after receiving UVB irradiation, sequential alterations of zebrafish embryos at morphological (fin), cellular (cell death, oxidative stress, immune-response, and marker gene expression) and molecular (microarray screen and real-time RT-PCR assay) levels were examined in this study. The results showed that junbb gene expression was activated as early as 3 h post-UVB irradiation, followed by significant elevation of apoptosis around 9 h post-UVB irradiation, neutrophil migration to the wound area approximately 14 h post-UVB irradiation, and activation of mmp gene expression at around 24 h post-UVB irradiation. These chronological cellular and molecular responses after UVB irradiation in zebrafish provide a basic and fundamental foundation for future line construction and UVB-associated gene validation. ABSTRACT: Ultraviolet B (UVB) radiation has drawn more attention over these past few decades since it causes severe DNA damage and induces inflammatory response. Serial gene profiling and high throughput data in UVB-associated phenomenon in human cultured cells or full rack of human skin have been investigated. However, results using different tissue models lead to ambiguity in UVB-induced pathways. In order to systematically understand the UVB-associated reactions, the zebrafish model was used, and whole organism gene profiling was performed to identify a novel biomarker which can be used to generate a new mechanistic approach for further screening on a UVB-related system biology. In this study, detailed morphological assays were performed to address biological response after receiving UVB irradiation at morphological, cellular, and molecular levels. Microarray screening and whole genome profiling revealed that there is an early onset expression of junbb in zebrafish embryos after UVB irradiation. Also, the identified novel biomarker junbb is more sensitive to UVB response than mmps which have been used in mouse models. Moreover, cellular and molecular response chronology after UVB irradiation in zebrafish provide a solid and fundamental mechanism for use in a UV radiation-associated study in the future. MDPI 2020-06-25 /pmc/articles/PMC7341518/ /pubmed/32630437 http://dx.doi.org/10.3390/ani10061096 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Rui-Yi
Lin, Chun-Ju
Liang, Sung-Tzu
Villalobos, Omar
Villaflores, Oliver B.
Lou, Bao
Lai, Yu-Heng
Hsiao, Chung-Der
UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title_full UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title_fullStr UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title_full_unstemmed UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title_short UVB Irradiation Induced Cell Damage and Early Onset of Junbb Expression in Zebrafish
title_sort uvb irradiation induced cell damage and early onset of junbb expression in zebrafish
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341518/
https://www.ncbi.nlm.nih.gov/pubmed/32630437
http://dx.doi.org/10.3390/ani10061096
work_keys_str_mv AT chenruiyi uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT linchunju uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT liangsungtzu uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT villalobosomar uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT villafloresoliverb uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT loubao uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT laiyuheng uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish
AT hsiaochungder uvbirradiationinducedcelldamageandearlyonsetofjunbbexpressioninzebrafish