Cargando…

TREM2 ectodomain and its soluble form in Alzheimer’s disease

Triggering receptor expressed on myeloid cells 2 (TREM2) is a receptor mainly expressed on the surface of microglia. It mediates multiple pathophysiological processes in various diseases. Recently, TREM2 has been found to play a role in the development of Alzheimer’s disease (AD). TREM2 is a transme...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jiaolong, Fu, Zhihui, Zhang, Xingyu, Xiong, Min, Meng, Lanxia, Zhang, Zhentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341574/
https://www.ncbi.nlm.nih.gov/pubmed/32635934
http://dx.doi.org/10.1186/s12974-020-01878-2
Descripción
Sumario:Triggering receptor expressed on myeloid cells 2 (TREM2) is a receptor mainly expressed on the surface of microglia. It mediates multiple pathophysiological processes in various diseases. Recently, TREM2 has been found to play a role in the development of Alzheimer’s disease (AD). TREM2 is a transmembrane protein that is specifically expressed on microglia in the brain. It contains a long ectodomain that directly interacts with the extracellular environment to regulate microglial function. The ectodomain of TREM2 is processed by a disintegrin and metalloprotease, resulting in the release of a soluble form of TREM2 (sTREM2). Recent studies have demonstrated that sTREM2 is a bioactive molecule capable of binding ligands, activating microglia, and regulating immune responses during the AD continuum. Clinical studies revealed that sTREM2 level is elevated in cerebrospinal fluid (CSF) of AD patients, and the sTREM2 level is positively correlated with the levels of classical CSF biomarkers, namely t-tau and p-tau, indicating that it is a reliable predictor of the early stages of AD. Herein, we summarize the key results on the generation, structure, and function of sTREM2 to provide new insights into TREM2-related mechanisms underlying AD pathogenesis and to promote the development of TREM2-based therapeutic strategy.