Cargando…
Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis
BACKGROUND: Accumulating evidence suggests that cardiotoxicity is one of the main manifestations of aconitine (AC) poisoning. However, the molecular mechanism of AC-induced cardiotoxicity remains unclear, there is little direct evidence for therapeutic targets and drugs of AC-induced cardiotoxicity....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341694/ https://www.ncbi.nlm.nih.gov/pubmed/32598336 http://dx.doi.org/10.12659/MSM.924092 |
_version_ | 1783555288184389632 |
---|---|
author | Wang, Mingzhu Shi, Yanan Yao, Lei Li, Qiang Wang, Youhua Fu, Deyu |
author_facet | Wang, Mingzhu Shi, Yanan Yao, Lei Li, Qiang Wang, Youhua Fu, Deyu |
author_sort | Wang, Mingzhu |
collection | PubMed |
description | BACKGROUND: Accumulating evidence suggests that cardiotoxicity is one of the main manifestations of aconitine (AC) poisoning. However, the molecular mechanism of AC-induced cardiotoxicity remains unclear, there is little direct evidence for therapeutic targets and drugs of AC-induced cardiotoxicity. MATERIAL/METHODS: Zebrafish were exposed to AC to evaluate cardiotoxicity by calculating the heart rates and observing the changes of cardiac and vascular structure. RNA-seq (RNA sequencing) and bioinformatics analysis were used to obtain differentially expressed genes (DEGs). The anti-AC cardiotoxicity compound was identified via connectivity map (CMAP) analysis and molecular docking. RESULTS: AC-induced cardiotoxicity in zebrafish predominantly included arrhythmias, extended sinus venous and bulbus arteriosus (SV-BA) distance, and larger pericardial edema aera. A total of 1380 DEGs were identified by RNA-seq and bioinformatics analysis. cyclin-dependent kinase-1 (CDK1) was screened as the hub gene and the most potential therapeutic target due to its significant downregulation in cardiotoxicity based on protein-protein interaction (PPI) and drug-gene interaction (DGIdb) network analysis. Cell cycle signal pathway was the most significant pathways identified in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the expression of CDK1 was validated in the Gene Expression Omnibus (GEO) database GSE71906, GSE65705, and GSE95140. Finally, heptaminol was identified as a novel anti-AC cardiotoxicity compound via CMAP analysis and molecular docking. CONCLUSIONS: Totally, hub genes and key pathways identified in this study can aid in the understanding of the molecular changes in AC-induced cardiotoxicity. Meanwhile, we provide a systematic method to explore drug toxicity prevention and treatment. |
format | Online Article Text |
id | pubmed-7341694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73416942020-07-09 Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis Wang, Mingzhu Shi, Yanan Yao, Lei Li, Qiang Wang, Youhua Fu, Deyu Med Sci Monit Lab/In Vitro Research BACKGROUND: Accumulating evidence suggests that cardiotoxicity is one of the main manifestations of aconitine (AC) poisoning. However, the molecular mechanism of AC-induced cardiotoxicity remains unclear, there is little direct evidence for therapeutic targets and drugs of AC-induced cardiotoxicity. MATERIAL/METHODS: Zebrafish were exposed to AC to evaluate cardiotoxicity by calculating the heart rates and observing the changes of cardiac and vascular structure. RNA-seq (RNA sequencing) and bioinformatics analysis were used to obtain differentially expressed genes (DEGs). The anti-AC cardiotoxicity compound was identified via connectivity map (CMAP) analysis and molecular docking. RESULTS: AC-induced cardiotoxicity in zebrafish predominantly included arrhythmias, extended sinus venous and bulbus arteriosus (SV-BA) distance, and larger pericardial edema aera. A total of 1380 DEGs were identified by RNA-seq and bioinformatics analysis. cyclin-dependent kinase-1 (CDK1) was screened as the hub gene and the most potential therapeutic target due to its significant downregulation in cardiotoxicity based on protein-protein interaction (PPI) and drug-gene interaction (DGIdb) network analysis. Cell cycle signal pathway was the most significant pathways identified in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the expression of CDK1 was validated in the Gene Expression Omnibus (GEO) database GSE71906, GSE65705, and GSE95140. Finally, heptaminol was identified as a novel anti-AC cardiotoxicity compound via CMAP analysis and molecular docking. CONCLUSIONS: Totally, hub genes and key pathways identified in this study can aid in the understanding of the molecular changes in AC-induced cardiotoxicity. Meanwhile, we provide a systematic method to explore drug toxicity prevention and treatment. International Scientific Literature, Inc. 2020-05-07 /pmc/articles/PMC7341694/ /pubmed/32598336 http://dx.doi.org/10.12659/MSM.924092 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Lab/In Vitro Research Wang, Mingzhu Shi, Yanan Yao, Lei Li, Qiang Wang, Youhua Fu, Deyu Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title | Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title_full | Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title_fullStr | Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title_full_unstemmed | Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title_short | Potential Molecular Mechanisms and Drugs for Aconitine-Induced Cardiotoxicity in Zebrafish through RNA Sequencing and Bioinformatics Analysis |
title_sort | potential molecular mechanisms and drugs for aconitine-induced cardiotoxicity in zebrafish through rna sequencing and bioinformatics analysis |
topic | Lab/In Vitro Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341694/ https://www.ncbi.nlm.nih.gov/pubmed/32598336 http://dx.doi.org/10.12659/MSM.924092 |
work_keys_str_mv | AT wangmingzhu potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis AT shiyanan potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis AT yaolei potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis AT liqiang potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis AT wangyouhua potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis AT fudeyu potentialmolecularmechanismsanddrugsforaconitineinducedcardiotoxicityinzebrafishthroughrnasequencingandbioinformaticsanalysis |