Cargando…
Labeling and Characterization of Human GLP-1-Secreting L-cells in Primary Ileal Organoid Culture
Glucagon-like peptide-1 (GLP-1) from intestinal L-cells stimulates insulin secretion and reduces appetite after food ingestion, and it is the basis for drugs against type-2 diabetes and obesity. Drugs targeting L- and other enteroendocrine cells are under development, with the aim to mimic endocrine...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7342002/ https://www.ncbi.nlm.nih.gov/pubmed/32610134 http://dx.doi.org/10.1016/j.celrep.2020.107833 |
Sumario: | Glucagon-like peptide-1 (GLP-1) from intestinal L-cells stimulates insulin secretion and reduces appetite after food ingestion, and it is the basis for drugs against type-2 diabetes and obesity. Drugs targeting L- and other enteroendocrine cells are under development, with the aim to mimic endocrine effects of gastric bypass surgery, but they are difficult to develop without human L-cell models. Human ileal organoids, engineered by CRISPR-Cas9, express the fluorescent protein Venus in the proglucagon locus, enabling maintenance of live, identifiable human L-cells in culture. Fluorescence-activated cell sorting (FACS)-purified organoid-derived L-cells, analyzed by RNA sequencing (RNA-seq), express hormones, receptors, and ion channels, largely typical of their murine counterparts. L-cells are electrically active and exhibit membrane depolarization and calcium elevations in response to G-protein-coupled receptor ligands. Organoids secrete hormones in response to glucose and other stimuli. The ability to label and maintain human L-cells in organoid culture opens avenues to explore L-cell function and develop drugs targeting the human enteroendocrine system. |
---|