Cargando…
A validation framework for neuroimaging software: The case of population receptive fields
Neuroimaging software methods are complex, making it a near certainty that some implementations will contain errors. Modern computational techniques (i.e., public code and data repositories, continuous integration, containerization) enable the reproducibility of the analyses and reduce coding errors...
Autores principales: | Lerma-Usabiaga, Garikoitz, Benson, Noah, Winawer, Jonathan, Wandell, Brian A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343185/ https://www.ncbi.nlm.nih.gov/pubmed/32584808 http://dx.doi.org/10.1371/journal.pcbi.1007924 |
Ejemplares similares
-
Characterizing spatiotemporal population receptive fields in human visual cortex with fMRI
por: Kim, Insub, et al.
Publicado: (2023) -
A population receptive field model of the magnetoencephalography response
por: Kupers, Eline R., et al.
Publicado: (2021) -
Data-science ready, multisite, human diffusion MRI white-matter-tract statistics
por: Lerma-Usabiaga, Garikoitz, et al.
Publicado: (2020) -
Reproducible Tract Profiles 2 (RTP2) suite, from diffusion MRI acquisition to clinical practice and research
por: Lerma-Usabiaga, Garikoitz, et al.
Publicado: (2023) -
The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis
por: Benson, Noah C., et al.
Publicado: (2018)