Cargando…

Fast saccadic and manual responses to faces presented to the koniocellular visual pathway

The parallel pathways of the human visual system differ in their tuning to luminance, color, and spatial frequency. These attunements recently have been shown to propagate to differential processing of higher-order stimuli, facial threat cues, in the magnocellular (M) and parvocellular (P) pathways,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kveraga, Kestutis, Im, Hee Yeon, Ward, Noreen, Adams, Reginald B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343428/
https://www.ncbi.nlm.nih.gov/pubmed/32097485
http://dx.doi.org/10.1167/jov.20.2.9
Descripción
Sumario:The parallel pathways of the human visual system differ in their tuning to luminance, color, and spatial frequency. These attunements recently have been shown to propagate to differential processing of higher-order stimuli, facial threat cues, in the magnocellular (M) and parvocellular (P) pathways, with greater sensitivity to clear and ambiguous threat, respectively. The role of the third, koniocellular (K) pathway in facial threat processing, however, remains unknown. To address this gap in knowledge, we briefly presented peripheral face stimuli psychophysically biased towards M, P, or K pathways. Observers were instructed to report via a key-press whether the face was angry or neutral while their eye movements and manual responses were recorded. We found that short-latency saccades were made more frequently to faces presented in the K channel than to P or M channels. Saccade latencies were not significantly modulated by expressive and identity cues. In contrast, manual response latencies and accuracy were modulated by both pathway biasing and by interactions of facial expression with facial masculinity, such that angry male faces elicited the fastest, and angry female faces, the least accurate, responses. We conclude that face stimuli can evoke fast saccadic and manual responses when projected to the K pathway.