Cargando…
A new format of perceptual learning based on evidence abstraction from multiple stimuli
Perceptual learning, which improves stimulus discrimination, typically results from training with a single stimulus condition. Two major learning mechanisms, early cortical neural plasticity and response reweighting, have been proposed. Here we report a new format of perceptual learning that by desi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343432/ https://www.ncbi.nlm.nih.gov/pubmed/32097482 http://dx.doi.org/10.1167/jov.20.2.5 |
_version_ | 1783555756468994048 |
---|---|
author | Xie, Xin-Yu Yu, Cong |
author_facet | Xie, Xin-Yu Yu, Cong |
author_sort | Xie, Xin-Yu |
collection | PubMed |
description | Perceptual learning, which improves stimulus discrimination, typically results from training with a single stimulus condition. Two major learning mechanisms, early cortical neural plasticity and response reweighting, have been proposed. Here we report a new format of perceptual learning that by design may have bypassed these mechanisms. Instead, it is more likely based on abstracted stimulus evidence from multiple stimulus conditions. Specifically, we had observers practice orientation discrimination with Gabors or symmetric dot patterns at up to 47 random or rotating location × orientation conditions. Although each condition received sparse trials (12 trials/session), the practice produced significant orientation learning. Learning also transferred to a Gabor at a single untrained condition with two- to three-times lower orientation thresholds. Moreover, practicing a single stimulus condition with matched trial frequency (12 trials/session) failed to produce significant learning. These results suggest that learning with multiple stimulus conditions may not come from early cortical plasticity or response reweighting with each particular condition. Rather, it may materialize through a new format of perceptual learning, in which orientation evidence invariant to particular orientations and locations is first abstracted from multiple stimulus conditions and then reweighted by later learning mechanisms. The coarse-to-fine transfer of orientation learning from multiple Gabors or symmetric dot patterns to a single Gabor also suggest the involvement of orientation concept learning by the learning mechanisms. |
format | Online Article Text |
id | pubmed-7343432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-73434322020-07-21 A new format of perceptual learning based on evidence abstraction from multiple stimuli Xie, Xin-Yu Yu, Cong J Vis Article Perceptual learning, which improves stimulus discrimination, typically results from training with a single stimulus condition. Two major learning mechanisms, early cortical neural plasticity and response reweighting, have been proposed. Here we report a new format of perceptual learning that by design may have bypassed these mechanisms. Instead, it is more likely based on abstracted stimulus evidence from multiple stimulus conditions. Specifically, we had observers practice orientation discrimination with Gabors or symmetric dot patterns at up to 47 random or rotating location × orientation conditions. Although each condition received sparse trials (12 trials/session), the practice produced significant orientation learning. Learning also transferred to a Gabor at a single untrained condition with two- to three-times lower orientation thresholds. Moreover, practicing a single stimulus condition with matched trial frequency (12 trials/session) failed to produce significant learning. These results suggest that learning with multiple stimulus conditions may not come from early cortical plasticity or response reweighting with each particular condition. Rather, it may materialize through a new format of perceptual learning, in which orientation evidence invariant to particular orientations and locations is first abstracted from multiple stimulus conditions and then reweighted by later learning mechanisms. The coarse-to-fine transfer of orientation learning from multiple Gabors or symmetric dot patterns to a single Gabor also suggest the involvement of orientation concept learning by the learning mechanisms. The Association for Research in Vision and Ophthalmology 2020-02-25 /pmc/articles/PMC7343432/ /pubmed/32097482 http://dx.doi.org/10.1167/jov.20.2.5 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Xie, Xin-Yu Yu, Cong A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title | A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title_full | A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title_fullStr | A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title_full_unstemmed | A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title_short | A new format of perceptual learning based on evidence abstraction from multiple stimuli |
title_sort | new format of perceptual learning based on evidence abstraction from multiple stimuli |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343432/ https://www.ncbi.nlm.nih.gov/pubmed/32097482 http://dx.doi.org/10.1167/jov.20.2.5 |
work_keys_str_mv | AT xiexinyu anewformatofperceptuallearningbasedonevidenceabstractionfrommultiplestimuli AT yucong anewformatofperceptuallearningbasedonevidenceabstractionfrommultiplestimuli AT xiexinyu newformatofperceptuallearningbasedonevidenceabstractionfrommultiplestimuli AT yucong newformatofperceptuallearningbasedonevidenceabstractionfrommultiplestimuli |