Cargando…

Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field

Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of ante...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Dandan, Marguet, Sylvie, Issa, Ali, Jradi, Safi, Nguyen, Tien Hoa, Nahra, Mackrine, Béal, Jéremie, Deturche, Régis, Chen, Hongshi, Blaize, Sylvain, Plain, Jérôme, Fiorini, Céline, Douillard, Ludovic, Soppera, Olivier, Dinh, Xuan Quyen, Dang, Cuong, Yang, Xuyong, Xu, Tao, Wei, Bin, Sun, Xiao Wei, Couteau, Christophe, Bachelot, Renaud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343831/
https://www.ncbi.nlm.nih.gov/pubmed/32641727
http://dx.doi.org/10.1038/s41467-020-17248-8
_version_ 1783555830818275328
author Ge, Dandan
Marguet, Sylvie
Issa, Ali
Jradi, Safi
Nguyen, Tien Hoa
Nahra, Mackrine
Béal, Jéremie
Deturche, Régis
Chen, Hongshi
Blaize, Sylvain
Plain, Jérôme
Fiorini, Céline
Douillard, Ludovic
Soppera, Olivier
Dinh, Xuan Quyen
Dang, Cuong
Yang, Xuyong
Xu, Tao
Wei, Bin
Sun, Xiao Wei
Couteau, Christophe
Bachelot, Renaud
author_facet Ge, Dandan
Marguet, Sylvie
Issa, Ali
Jradi, Safi
Nguyen, Tien Hoa
Nahra, Mackrine
Béal, Jéremie
Deturche, Régis
Chen, Hongshi
Blaize, Sylvain
Plain, Jérôme
Fiorini, Céline
Douillard, Ludovic
Soppera, Olivier
Dinh, Xuan Quyen
Dang, Cuong
Yang, Xuyong
Xu, Tao
Wei, Bin
Sun, Xiao Wei
Couteau, Christophe
Bachelot, Renaud
author_sort Ge, Dandan
collection PubMed
description Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of antenna’s near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime.
format Online
Article
Text
id pubmed-7343831
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73438312020-07-13 Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field Ge, Dandan Marguet, Sylvie Issa, Ali Jradi, Safi Nguyen, Tien Hoa Nahra, Mackrine Béal, Jéremie Deturche, Régis Chen, Hongshi Blaize, Sylvain Plain, Jérôme Fiorini, Céline Douillard, Ludovic Soppera, Olivier Dinh, Xuan Quyen Dang, Cuong Yang, Xuyong Xu, Tao Wei, Bin Sun, Xiao Wei Couteau, Christophe Bachelot, Renaud Nat Commun Article Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of antenna’s near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime. Nature Publishing Group UK 2020-07-08 /pmc/articles/PMC7343831/ /pubmed/32641727 http://dx.doi.org/10.1038/s41467-020-17248-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ge, Dandan
Marguet, Sylvie
Issa, Ali
Jradi, Safi
Nguyen, Tien Hoa
Nahra, Mackrine
Béal, Jéremie
Deturche, Régis
Chen, Hongshi
Blaize, Sylvain
Plain, Jérôme
Fiorini, Céline
Douillard, Ludovic
Soppera, Olivier
Dinh, Xuan Quyen
Dang, Cuong
Yang, Xuyong
Xu, Tao
Wei, Bin
Sun, Xiao Wei
Couteau, Christophe
Bachelot, Renaud
Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title_full Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title_fullStr Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title_full_unstemmed Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title_short Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
title_sort hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343831/
https://www.ncbi.nlm.nih.gov/pubmed/32641727
http://dx.doi.org/10.1038/s41467-020-17248-8
work_keys_str_mv AT gedandan hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT marguetsylvie hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT issaali hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT jradisafi hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT nguyentienhoa hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT nahramackrine hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT bealjeremie hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT deturcheregis hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT chenhongshi hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT blaizesylvain hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT plainjerome hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT fioriniceline hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT douillardludovic hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT sopperaolivier hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT dinhxuanquyen hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT dangcuong hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT yangxuyong hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT xutao hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT weibin hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT sunxiaowei hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT couteauchristophe hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield
AT bachelotrenaud hybridplasmonicnanoemitterswithcontrolledsinglequantumemitterpositioningonthelocalexcitationfield