Cargando…

A new climate data record of upper-tropospheric humidity from microwave observations

We generated a new Climate Data Record (CDR) of Upper Tropospheric Humidity (UTH) based on observations from the microwave sounders Special Sensor Microwave Temperature - 2 (SSMT-2), Advanced Microwave Sounding Unit - B (AMSU-B) and Microwave Humidity Sounder (MHS). The data record covers the time p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lang, Theresa, Buehler, Stefan A., Burgdorf, Martin, Hans, Imke, John, Viju O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343885/
https://www.ncbi.nlm.nih.gov/pubmed/32641691
http://dx.doi.org/10.1038/s41597-020-0560-1
Descripción
Sumario:We generated a new Climate Data Record (CDR) of Upper Tropospheric Humidity (UTH) based on observations from the microwave sounders Special Sensor Microwave Temperature - 2 (SSMT-2), Advanced Microwave Sounding Unit - B (AMSU-B) and Microwave Humidity Sounder (MHS). The data record covers the time period between 1994 and 2017 and provides monthly mean 183.31 ± 1 GHz brightness temperatures and derived UTH along with estimates of measurement uncertainty on a 1° × 1° latitude-longitude grid covering the tropical region (30° S to 30° N). For the UTH retrieval we introduce a new definition of UTH. Forgoing the use of the humidity Jacobian as a weighting function, it is easier to apply than the traditional definition without compromising the retrieval accuracy. The same definition can be used to derive UTH from infrared observations, allowing for a more synergistic use of infrared and microwave UTH in the future. The new UTH CDR is validated against an existing UTH data record.