Cargando…
Optical parametric amplification of sub-cycle shortwave infrared pulses
Few–cycle short–wave infrared (SWIR) pulses are useful tools for research on strong–field physics and nonlinear optics. Here we demonstrate the amplification of sub–cycle pulses in the SWIR region by using a cascaded BBO–based optical parametric amplifier (OPA) chain. By virtue of the tailored wavel...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343886/ https://www.ncbi.nlm.nih.gov/pubmed/32641703 http://dx.doi.org/10.1038/s41467-020-17247-9 |
Sumario: | Few–cycle short–wave infrared (SWIR) pulses are useful tools for research on strong–field physics and nonlinear optics. Here we demonstrate the amplification of sub–cycle pulses in the SWIR region by using a cascaded BBO–based optical parametric amplifier (OPA) chain. By virtue of the tailored wavelength of the pump pulse of 708 nm, we successfully obtained a gain bandwidth of more than one octave for a BBO crystal. The division and synthesis of the spectral components of the pulse in a Mach–Zehnder–type interferometer set in front of the final amplifier enabled us to control the dispersion of each spectral component using an acousto–optic programmable dispersive filter inserted in each arm of the interferometer. As a result, we successfully generated 0.73–optical–cycle pulses at 1.8 μm with a pulse energy of 32 μJ. |
---|