Cargando…
EHR2Vec: Representation Learning of Medical Concepts From Temporal Patterns of Clinical Notes Based on Self-Attention Mechanism
Efficiently learning representations of clinical concepts (i. e., symptoms, lab test, etc.) from unstructured clinical notes of electronic health record (EHR) data remain significant challenges, since each patient may have multiple visits at different times and each visit may contain different seque...
Autores principales: | Wang, Li, Wang, Qinghua, Bai, Heming, Liu, Cong, Liu, Wei, Zhang, Yuanpeng, Jiang, Lei, Xu, Huji, Wang, Kai, Zhou, Yunyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344186/ https://www.ncbi.nlm.nih.gov/pubmed/32714371 http://dx.doi.org/10.3389/fgene.2020.00630 |
Ejemplares similares
-
iCDI-W2vCom: Identifying the Ion Channel–Drug Interaction in Cellular Networking Based on word2vec and node2vec
por: Zheng, Jie, et al.
Publicado: (2021) -
Prediction of Drug–Gene Interaction by Using Metapath2vec
por: Zhu, Siyi, et al.
Publicado: (2018) -
Generating Mesh Representations of VecGeom Solids
por: Topak, Murat
Publicado: (2019) -
Predicting Parkinson's Disease Genes Based on Node2vec and Autoencoder
por: Peng, Jiajie, et al.
Publicado: (2019) -
Mut2Vec: distributed representation of cancerous mutations
por: Kim, Sunkyu, et al.
Publicado: (2018)