Cargando…
Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis
Graph neural networks (GNN) rely on graph operations that include neural network training for various graph related tasks. Recently, several attempts have been made to apply the GNNs to functional magnetic resonance image (fMRI) data. Despite recent progresses, a common limitation is its difficulty...
Autores principales: | Kim, Byung-Hoon, Ye, Jong Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344313/ https://www.ncbi.nlm.nih.gov/pubmed/32714130 http://dx.doi.org/10.3389/fnins.2020.00630 |
Ejemplares similares
-
Reproducibility of Graph Metrics in fMRI Networks
por: Telesford, Qawi K., et al.
Publicado: (2010) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
A Tensor-Based Framework for rs-fMRI Classification and Functional Connectivity Construction
por: Noroozi, Ali, et al.
Publicado: (2020) -
Predicting treatment response in adolescents and young adults with major depressive episodes from fMRI using graph isomorphism network
por: Duan, Jia, et al.
Publicado: (2023) -
Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach
por: Zhang, Tingting, et al.
Publicado: (2021)