Cargando…
Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China
Land use change has a significant impact on the structure and function of ecosystems, and the transformation of ecosystems affects the mode and efficiency of land use, which reflects a mutual interaction relationship. The prediction and simulation of future land use change can enhance the foresight...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344442/ https://www.ncbi.nlm.nih.gov/pubmed/32545778 http://dx.doi.org/10.3390/ijerph17124228 |
_version_ | 1783555944716697600 |
---|---|
author | Hu, Sai Chen, Longqian Li, Long Zhang, Ting Yuan, Lina Cheng, Liang Wang, Jia Wen, Mingxin |
author_facet | Hu, Sai Chen, Longqian Li, Long Zhang, Ting Yuan, Lina Cheng, Liang Wang, Jia Wen, Mingxin |
author_sort | Hu, Sai |
collection | PubMed |
description | Land use change has a significant impact on the structure and function of ecosystems, and the transformation of ecosystems affects the mode and efficiency of land use, which reflects a mutual interaction relationship. The prediction and simulation of future land use change can enhance the foresight of land use planning, which is of great significance to regional sustainable development. In this study, future land use changes are characterized under an ecological optimization scenario based on the grey prediction (1,1) model (GM) and a future land use simulation (FLUS) model. In addition, the ecosystem service value (ESV) of Anhui Province from 1995 to 2030 were estimated based on the revised estimation model. The results indicate the following details: (1) the FLUS model was used to simulate the land use layout of Anhui Province in 2018, where the overall accuracy of the simulation results is high, indicating that the FLUS model is applicable for simulating future land use change; (2) the spatial layout of land use types in Anhui Province is stable and the cultivated land has the highest proportion. The most significant characteristic of future land use change is that the area of cultivated land continues to decrease while the area of built-up land continues to expand; and (3) the ESV of Anhui Province is predicted to increase in the future. The regulating service is the largest ESV contributor, and water area is the land use type with the highest proportion of ESV. These findings provide reference for the formulation of sustainable development policies of the regional ecological environment. |
format | Online Article Text |
id | pubmed-7344442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73444422020-07-14 Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China Hu, Sai Chen, Longqian Li, Long Zhang, Ting Yuan, Lina Cheng, Liang Wang, Jia Wen, Mingxin Int J Environ Res Public Health Article Land use change has a significant impact on the structure and function of ecosystems, and the transformation of ecosystems affects the mode and efficiency of land use, which reflects a mutual interaction relationship. The prediction and simulation of future land use change can enhance the foresight of land use planning, which is of great significance to regional sustainable development. In this study, future land use changes are characterized under an ecological optimization scenario based on the grey prediction (1,1) model (GM) and a future land use simulation (FLUS) model. In addition, the ecosystem service value (ESV) of Anhui Province from 1995 to 2030 were estimated based on the revised estimation model. The results indicate the following details: (1) the FLUS model was used to simulate the land use layout of Anhui Province in 2018, where the overall accuracy of the simulation results is high, indicating that the FLUS model is applicable for simulating future land use change; (2) the spatial layout of land use types in Anhui Province is stable and the cultivated land has the highest proportion. The most significant characteristic of future land use change is that the area of cultivated land continues to decrease while the area of built-up land continues to expand; and (3) the ESV of Anhui Province is predicted to increase in the future. The regulating service is the largest ESV contributor, and water area is the land use type with the highest proportion of ESV. These findings provide reference for the formulation of sustainable development policies of the regional ecological environment. MDPI 2020-06-13 2020-06 /pmc/articles/PMC7344442/ /pubmed/32545778 http://dx.doi.org/10.3390/ijerph17124228 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Sai Chen, Longqian Li, Long Zhang, Ting Yuan, Lina Cheng, Liang Wang, Jia Wen, Mingxin Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title | Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title_full | Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title_fullStr | Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title_full_unstemmed | Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title_short | Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China |
title_sort | simulation of land use change and ecosystem service value dynamics under ecological constraints in anhui province, china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344442/ https://www.ncbi.nlm.nih.gov/pubmed/32545778 http://dx.doi.org/10.3390/ijerph17124228 |
work_keys_str_mv | AT husai simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT chenlongqian simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT lilong simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT zhangting simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT yuanlina simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT chengliang simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT wangjia simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina AT wenmingxin simulationoflandusechangeandecosystemservicevaluedynamicsunderecologicalconstraintsinanhuiprovincechina |