Cargando…
External Gas-Assisted Mold Temperature Control Improves Weld Line Quality in the Injection Molding Process
Simulations and experiments were conducted with gas temperatures of 200–400 °C to investigate the impact of external gas-assisted mold temperature control (Ex-GMTC) on the quality of weld line of molding products. In the heating step, the heating rate was 19.6 °C/s from 30 to 128.5 °C in the first 5...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344472/ https://www.ncbi.nlm.nih.gov/pubmed/32630543 http://dx.doi.org/10.3390/ma13122855 |
Sumario: | Simulations and experiments were conducted with gas temperatures of 200–400 °C to investigate the impact of external gas-assisted mold temperature control (Ex-GMTC) on the quality of weld line of molding products. In the heating step, the heating rate was 19.6 °C/s from 30 to 128.5 °C in the first 5 s in a 400 °C gas environment. When applied to heating the weld line area of an injection mold, Ex-GMTC improved the appearance of the weld line when the cavity temperature was preheated to 150 °C. For the tensile strength test, a melt flow simulation comparing the packing pressure of different mesh thicknesses revealed that Ex-GMTC helped maintain a high pressure in the weld line area in different packing periods. This was verified by an experiment where Ex-GMTC was applied with 400 °C gas to change the mesh area temperature. The result indicated that an increase in the weld line area temperature from 60 to 180 °C improves the tensile strength of all mesh thicknesses, which was more pronounced with thinner parts, especially at 0.4 mm. The simulations revealed that high temperature is concentrated in the weld line area of the cavity surface, thus reducing the energy wasted during heating. |
---|