Cargando…
Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis
Developing highly-efficient membranes for toxin clearance in small-format hemodialysis presents a fabrication challenge. The miniaturization of fluidics and controls has been the focus of current work on hemodialysis (HD) devices. This approach has not addressed the membrane efficiency needed for to...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344517/ https://www.ncbi.nlm.nih.gov/pubmed/32517263 http://dx.doi.org/10.3390/membranes10060119 |
_version_ | 1783555962336968704 |
---|---|
author | Miller, Joshua J. Carter, Jared A. Hill, Kayli DesOrmeaux, Jon-Paul S. Carter, Robert N. Gaborski, Thomas R. Roussie, James A. McGrath, James L. Johnson, Dean G. |
author_facet | Miller, Joshua J. Carter, Jared A. Hill, Kayli DesOrmeaux, Jon-Paul S. Carter, Robert N. Gaborski, Thomas R. Roussie, James A. McGrath, James L. Johnson, Dean G. |
author_sort | Miller, Joshua J. |
collection | PubMed |
description | Developing highly-efficient membranes for toxin clearance in small-format hemodialysis presents a fabrication challenge. The miniaturization of fluidics and controls has been the focus of current work on hemodialysis (HD) devices. This approach has not addressed the membrane efficiency needed for toxin clearance in small-format hemodialysis devices. Dr. Willem Kolff built the first dialyzer in 1943 and many changes have been made to HD technology since then. However, conventional HD still uses large instruments with bulky dialysis cartridges made of ~2 m(2) of 10 micron thick, tortuous-path membrane material. Portable, wearable, and implantable HD systems may improve clinical outcomes for patients with end-stage renal disease by increasing the frequency of dialysis. The ability of ultrathin silicon-based sheet membranes to clear toxins is tested along with an analytical model predicting long-term multi-pass experiments from single-pass clearance experiments. Advanced fabrication methods are introduced that produce a new type of nanoporous silicon nitride sheet membrane that features the pore sizes needed for middle-weight toxin removal. Benchtop clearance results with sheet membranes (~3 cm(2)) match a theoretical model and indicate that sheet membranes can reduce (by orders of magnitude) the amount of membrane material required for hemodialysis. This provides the performance needed for small-format hemodialysis. |
format | Online Article Text |
id | pubmed-7344517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-73445172020-07-09 Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis Miller, Joshua J. Carter, Jared A. Hill, Kayli DesOrmeaux, Jon-Paul S. Carter, Robert N. Gaborski, Thomas R. Roussie, James A. McGrath, James L. Johnson, Dean G. Membranes (Basel) Article Developing highly-efficient membranes for toxin clearance in small-format hemodialysis presents a fabrication challenge. The miniaturization of fluidics and controls has been the focus of current work on hemodialysis (HD) devices. This approach has not addressed the membrane efficiency needed for toxin clearance in small-format hemodialysis devices. Dr. Willem Kolff built the first dialyzer in 1943 and many changes have been made to HD technology since then. However, conventional HD still uses large instruments with bulky dialysis cartridges made of ~2 m(2) of 10 micron thick, tortuous-path membrane material. Portable, wearable, and implantable HD systems may improve clinical outcomes for patients with end-stage renal disease by increasing the frequency of dialysis. The ability of ultrathin silicon-based sheet membranes to clear toxins is tested along with an analytical model predicting long-term multi-pass experiments from single-pass clearance experiments. Advanced fabrication methods are introduced that produce a new type of nanoporous silicon nitride sheet membrane that features the pore sizes needed for middle-weight toxin removal. Benchtop clearance results with sheet membranes (~3 cm(2)) match a theoretical model and indicate that sheet membranes can reduce (by orders of magnitude) the amount of membrane material required for hemodialysis. This provides the performance needed for small-format hemodialysis. MDPI 2020-06-06 /pmc/articles/PMC7344517/ /pubmed/32517263 http://dx.doi.org/10.3390/membranes10060119 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miller, Joshua J. Carter, Jared A. Hill, Kayli DesOrmeaux, Jon-Paul S. Carter, Robert N. Gaborski, Thomas R. Roussie, James A. McGrath, James L. Johnson, Dean G. Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title | Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title_full | Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title_fullStr | Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title_full_unstemmed | Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title_short | Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis |
title_sort | free standing, large-area silicon nitride membranes for high toxin clearance in blood surrogate for small-format hemodialysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344517/ https://www.ncbi.nlm.nih.gov/pubmed/32517263 http://dx.doi.org/10.3390/membranes10060119 |
work_keys_str_mv | AT millerjoshuaj freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT carterjareda freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT hillkayli freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT desormeauxjonpauls freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT carterrobertn freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT gaborskithomasr freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT roussiejamesa freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT mcgrathjamesl freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis AT johnsondeang freestandinglargeareasiliconnitridemembranesforhightoxinclearanceinbloodsurrogateforsmallformathemodialysis |