Cargando…

Effect of Al Content in Magnesium Alloy on Microstructure and Mechanical Properties of Laser-Welded Mg/Ti Dissimilar Joints

Laser penetration welding of magnesium alloys and pure titanium TA2 with unequal thickness was performed. Mg base metal with different Al content (AZ31B, AZ61A, AZ91D) was used to investigate the influence of Al element in microstructure and mechanical properties of Mg/Ti dissimilar joints. The resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Wen, Huang, Rongrong, Zhao, Hongyun, Gong, Xiangtao, Chen, Bo, Tan, Caiwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344574/
https://www.ncbi.nlm.nih.gov/pubmed/32560372
http://dx.doi.org/10.3390/ma13122743
Descripción
Sumario:Laser penetration welding of magnesium alloys and pure titanium TA2 with unequal thickness was performed. Mg base metal with different Al content (AZ31B, AZ61A, AZ91D) was used to investigate the influence of Al element in microstructure and mechanical properties of Mg/Ti dissimilar joints. The results revealed that the change of Mg base metal did not influence the weld appearance of the joints. Three kinds of joint all presented the best mechanical property when the laser power was 3500 W. With the increase content of Al elements in Mg base metal, a reaction layer was observed which was identified as Ti(3)Al. The highest enrichment of Al element was obtained and its fraction reached 19.31 at% at the AZ91/TA2 interface. The chemical potential gradient of Al from AZ91 to Ti alloy was higher than that from the other two base metals based on thermodynamic calculation. The maximum fracture load reached 3597 N when AZ61 was employed as the base metal and the fracture position was the Ti base metal. AZ31/TA2 joints failed at the weld seam without necking due to the rapid propagation of cracks at the Mg/Ti interface. The AZ91/TA2 joint failed inside the Mg fusion zone with necking at the middle area of the weld, which resulted from the precipitation of brittle phases such as Mg–Al, Ti–Al phases in the fusion zone of Mg alloys.